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1 Einleitung

Die Analyse von Blutflussdaten spielt eine wichtige Rolle bei der Diagno-
se von Krankheiten des kardiovaskulären Systems und bei der Planung von
deren Behandlung. Dafür werden zunehmend Daten mittels Phasenkontrast-
Magnetresonanz (MR) generiert, welche räumliche und zeitliche Informationen
über Richtung und Magnitude der lokalen Geschwindigkeit erfassen. Obwohl
diese Technik in den letzten Jahren stets weiterentwickelt wurde, sind die
Daten weiterhin aufgrund diverser Einschränkungen nicht oder nur bedingt
für medizinisch relevante Aussagen betroffener Patienten verwendbar. Grund
dafür ist die geringe zeitliche und räumliche Auflösung, zwischen denen tech-
nisch bedingt abgewägt werden muss.

Um das Problem zu umgehen und somit hochaufgelöste Daten zu erhalten,
werden numerische Strömungssimulationen verwendet. Gegenstand der Mes-
sung sind zumeist Gefäße, nicht selten mit anatomischen Besonderheiten wie
Abzweigungen und Aneurysmen. Deren innere Oberfläche wird als Simulati-
onsgeometrie am Computer nachgebildet. Anschließend wird ein Modell für
die Simulation gewählt, auf das in Kapitel 2 eingegangen wird. Dieses unter-
liegt jedoch einigen Annahmen und Vereinfachungen, sodass die Realität nur
bedingt abgebildet werden kann. Dadurch können die simulierten Daten nicht
für die Behandlung von Patienten herangezogen werden. Gegenstand aktueller
Forschung ist daher, sowohl gemessene als auch simulierte Daten gleicherma-
ßen zu verwenden bzw. zu kombinieren, was üblicherweise und im Folgenden
als Datenassimilation bezeichnet wird. Die so erhaltenen Daten sollen dabei
die tatsächlich vorliegenden Bedingungen in sowohl räumlich als auch zeit-
lich ausreichend hoher Auflösung widerspiegeln. Dies wird durch den Einsatz
von Strömungssimulationen ermöglicht. Deren Durchführung ist zwar zeitlich
aufwendig, jedoch steht dem eine angestrebte Reduzierung der Messdauer am
lebenden Objekt gegenüber.

Es existieren bereits einige Ansätze zur Assimilation von Blutflussdaten,
deren Kernbestandteil beispielsweise die Steuerung von Simulationen durch
die Verwendung der gemessenen Daten ist. Diesbezüglich wird in Kapitel 3 ein
Überblick über den aktuellen Forschungsstand gegeben. Ein grundsätzliches
Problem ist weiterhin die Evaluation der Resultate aufgrund des Mangels an
grundwahren Daten. Gemessene Daten bilden zwar die Wirklichkeit ab, sind
allerdings aus genannten Gründen nicht als Referenz zu betrachten, ebenso
wenig die rein simulierten Daten. Aus diesem Grund und durch die Vielzahl
möglicher Werte ist das Parametrisieren des gewählten Modells kein triviales
Unterfangen. Im Rahmen dieser Arbeit wird daher der Fokus auf die Wahl und
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1 Einleitung

die Parametrisierung des Modells gelegt, um eine erste Vergleichbarkeit zu den
gemessenen Daten schaffen zu können. Das so ermittelte Modell kann dann
weiterverwendet werden, um eine fortgeschrittene Assimilation durchzuführen.

Um ein erstes Verständnis der Auswirkungen verschiedener Parameterkonfi-
gurationen auf den Simulationsverlauf zu erlangen, werden die simulierten Da-
ten zunächst unabhängig von den gemessenen Daten betrachtet. Da stetig neue
Sequenzen zur Gewinnung von Phasenkontrast-MR-Daten entwickelt werden,
wird ebenfalls untersucht, inwiefern sich Ensembles von gemessenen Daten un-
terscheiden bzw. ähneln. Der nächste Schritt ist dann die Zusammenführung
der gemessenen und simulierten Ensembles. Zum Einsatz kommt dafür eine
Ähnlichkeitsdarstellung [6], welche eine aggregierte Visualisierung der Ensem-
bles darstellt, um auf einen Blick erste Vergleiche ziehen zu können. Diese
konnten bereits erfolgreich auf räumlich und zeitlich veränderlichen Daten,
insbesondere auf physikalischen Simulationen getestet werden [4, 19]. Grund-
legend dafür ist klassische Multidimensionale Skalierung und verschiedene Me-
triken, die unterschiedliche Strömungseigenschaften der Daten erfassen. Da
es sich um Vektorfelder handelt, werden die Unähnlichkeit der enthaltenen
Richtungen und deren Magnituden sowohl getrennt voneinander betrachtet
als auch in Kombination. Weitere interaktive Visualisierungen in mehreren ko-
ordinierten Ansichten geben Auskunft über den Ursprung der zuvor gezeigten
Ähnlichkeiten. Dies und weitere Implementierungsdetails werden in Kapitel 4
besprochen und die erstellte Anwendung zur Generierung und Analyse von
Simulationsensembles vorgestellt.

Die Implementierung erfolgt unter Verwendung von Voreen [22], ein quel-
loffenes Framework zur Volumenvisualisierung, vorgestellt in Unterkapitel 2.4,
welches um eine Simulations- und Analyseprozedur erweitert wird. Die Strö-
mungssimulationen werden dabei mit der Lattice-Boltzmann-Methode durch-
geführt. Diese wird in Unterkapitel 2.2.2 erläutert.

Die entwickelten Methoden werden in Kapitel 5 auf zwei Datensätze unter-
schiedlicher Komplexität angewendet und ausgewertet, welche mittels Phasen-
kontrast-MR akquiriert wurden. Zusammenfassend soll im Rahmen dieser Ar-
beit unter Verwendung von Simulationsensembles und einer Ähnlichkeitsanalyse
die Grundlage geschaffen werden, fortgeschrittene Techniken der Datenassimi-
lation durchführen zu können. Dementsprechend folgt abschließend ein Aus-
blick in Kapitel 6.
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2 Grundlagen

In diesem Kapitel werden zum Verständnis der Methodiken und Ergebnisse
notwendige Grundlagen vorgestellt. Dabei wird auf die Technik zur Akquirie-
rung der Daten, sowie auf die Lattice-Boltzmann-Methode und deren Parame-
trisierung eingegangen. Zum Zweck des Vergleichs von simulierten und gemes-
senen Daten wird die klassische Multidimensionale Skalierung erläutert. Da
die Implementierung mithilfe des Voreen-Frameworks wesentlicher Bestandteil
dieser Arbeit ist, wird es dazu ebenfalls eine Einführung geben, was zudem die
Weiterentwicklung erleichtern soll.

2.1 Phasenkontrast-Magnetresonanz

Die zum Zeitpunkt und Zweck der Arbeit vorliegenden Daten wurden mit-
tels Phasenkontrast-Magnetresonanz (MR) von der Arbeitsgruppe Magnetre-
sonanz am Institut für Medizinische Mikrobiologie der Universität Jena gene-
riert. Bei dieser Bildgebungstechnik führt das eingesetzte Magnetfeld zu einer
gemeinsamen Ausrichtung der Protonen der Wasserstoffatome, sowohl in den
Gefäßen als auch im umliegenden, stationären Gewebe. Über das Hauptma-
gnetfeld gelegte, bipolare Magnetfeldgradienten führen dann zu einer positi-
onsabhängigen Phasenverschiebung der Protonen. Diese fällt durch das flie-
ßende Blut stärker innerhalb von Gefäßen aus als im stationären Gewebe. Die
gemessene Phasenverschiebung hängt dabei unmittelbar von der Geschwin-
digkeit des Blutes ab und führt so in den Gefäßen zu einer hohen gemessenen
Signalstärke. Bedingt durch den technischen Fortschritt im Bereich der Magne-
tresonanzbildgebung existieren heute mehrere Ausprägungen der Messtechnik.
2D-Phasenkontrast-MR wird im klinischen Umfeld bereits genutzt, um Blut-
fluss in einer 2D-Ebene zu messen, welche vor der Messung ausgerichtet wird.
Eine quantitative Analyse der gewonnenen Daten durch das Auswerten der
Flussraten, -geschwindigkeiten sowie dem gepumpten Blut pro Herzschlag er-
leichtert die Einschätzung der Herzfunktionen. Die Berechnungen sind jedoch
stark von der zuvor gewählten Ausrichtung der Ebene abhängig [15]. Eine
Erweiterung stellt daher die 3D- bzw. 4D-Phasenkontrast-MR dar, wobei in
dadurch generierten Datensätzen für jede von drei orthogonalen Richtungen
entsprechend der Auflösung Bilder der Phasen und Magnituden vorliegen. In
zuletzt genannter Technik sind diese zudem zeitlich aufgelöst, sodass für jeden
diskreten Zeitschritt ein 3D-Datensatz vorliegt, womit meist ein vollständiger
Herzzyklus abgebildet wird. Die Daten werden dabei letztlich durch das Mit-
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2 Grundlagen

teln mehrerer Herzzyklen gewonnen, welche durch ein Navigatorsignal synchro-
nisiert werden. Die Phasenbilder werden dabei aus den Phasenunterschieden
jeder Raumrichtung berechnet, von denen jedes den Geschwindigkeitsanteil der
jeweiligen Richtung enthält. Dafür muss ein Parameter Venc festgelegt werden,
der die höchste erwartete Strömungsgeschwindigkeit je Richtung spezifiziert.
Je höher dieser Parameter gewählt wird, desto größer ist der Kontrastverlust,
weshalb in der Praxis zwischen der korrekten Detektion hoher Geschwindig-
keiten und hohem Kontrast abgewägt werden muss. Die zuvor erwähnten, bi-
polaren Magnetfeldgradienten werden dann so angepasst, dass die maximale
Phasenverschiebung der Venc entspricht. Aus den Phasenbildern wird dann ein
dreidimensionales, volumetrisches Vektorfeld der Geschwindigkeiten rekonstru-
iert. Diese enthalten auf einem regelmäßigen Gitter angeordnete Messpunkte,
deren Anzahl für jede Dimension im Folgenden durch ~d = (dx, dy, dz) definiert
sei. Der Abstand der Messpunkte in der physikalischen Domäne ist also nicht
notwendigerweise für jede Dimension dieselbe, jedoch innerhalb jeder Dimen-
sion konstant und wird als Spacing ~s = (sx, sy, sz) definiert. Ferner wird der
physikalische Abstand des ersten Messpunkts zum Ursprung des Koordina-
tensystems als Offset ~o = (ox, oy, oz) bezeichnet. Jeder Messpunkt enthält die
lokale, gerichtete Geschwindigkeit ~u, sowie deren Magnituden |~u| in mm s−1.
Da zwischen umliegenden Datenpunkten linear interpoliert oder der nächste
benachbarte Datenpunkt verwendet werden kann, lassen sich die Daten als
Funktionen auffassen. Damit seien die Geschwindigkeit ~u und Magnitude |~u|
durch

~u : R3 → R3, bzw. |~u| : R3 → R (2.1)

innerhalb der Domäne [ox, oy, oz]× [ox+sx ·dx, oy +sy ·dy, oz +sz ·dz] definiert.

Bei der Rekonstruktion kann es mitunter zu Phasenumkehrungen1 kommen,
wenn Venc zu niedrig gewählt wurde. Geschwindigkeiten, deren Magnitude
größer ist als durch den Parameter spezifiziert, werden dann auf die ande-
re Seite des Wertebereichs abgebildet. Es existieren allerdings Algorithmen,
um derartige Artefakte bis zu einem gewissen Grad zu kompensieren [15].
Die Aufnahmen der Magnituden werden anatomische Bilder genannt und ent-
halten die ungerichtete Strömungsgeschwindigkeit. Sie sind weniger anfällig
gegen unkorreliertes Rauschen als die Phasenbilder, weshalb diese verwendet
werden, um beispielsweise Segmentierungen durchzuführen [15]. Diese Informa-
tion wird ferner für die Implementierung in Kapitel 4 von Bedeutung sein. Bei
den beschriebenen Messungen, wie auch im Allgemeinen, wird unterschieden
zwischen solchen am lebenden Objekt (in-vivo) und an sogenannten Phanto-
men (in-vitro). Für zu behandelnde Patienten bzw. das Abbilden tatsächlichen
Blutflusses sind Messungen am lebenden Objekt unabdingbar. Für Forschungs-
zwecke ist dies jedoch meist zu teuer und aufwendig, bzw. ethisch fraglich,
wenn Tiere als Messobjekt dienen. So wurden beispielsweise Mäuse für zwei
der dieser Arbeit vorliegenden Datensätze etwa 60 Minuten narkotisiert und

1Phasenumkehrungen: von engl. phase-wraps
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2.2 Numerische Strömungssimulationen

der Messprozedur unterzogen [2]. An diesem Punkt werden Phantome einge-
setzt, insbesondere um neue Analysemethoden zu erforschen, ohne auf Mess-
daten verzichten zu müssen. Dabei kann es sich um abstrakte Gebilde han-
deln, wie etwa um einen Zylinder aus Acrylglas mit verschiedenen Einsätzen
zur Untersuchung deren Strömungsbeeinflussung. Einen Kompromiss zwischen
in-vivo und in-vitro Messungen können dagegen Nachbildungen tatsächlicher
Gefäße und Gefäßstrukturen wie Aneurysmen darstellen. Diese werden am
Computer anhand von Vorbildern modelliert und mit dem 3D-Drucker erstellt.
Das Modell kann dann mit verschiedenen Materialien (Latex-Gel, Flüssiglatex)
nachgeformt werden, um flexible Eigenschaften der Gefäßwände nachzuemp-
finden. Dies spiegelt jedoch nur bedingt die tatsächlichen Verhältnisse wider,
da das umliegende Gewebe ebenfalls einen Einfluss auf die Bewegung der
Gefäßwände hat, bzw. deren Eigenschaften nicht perfekt nachgebildet wer-
den können. Überdies wird aus mehreren Gründen Wasser als Flüssigkeit für
die in-vitro Messungen verwendet, anstatt menschliches Blut. Dabei wird so-
wohl einfaches Tafelwasser, als auch destilliertes Wasser, gemischt mit Gly-
cerin, Natriumiodid und Natriumthiosulfat verwendet, um Eigenschaften des
menschlichen Bluts nachzuempfinden [25].

2.2 Numerische Strömungssimulationen

Numerische Strömungssimulationen finden in vielen Bereichen mit den unter-
schiedlichsten Fluiden Verwendung, sei es im biomedizinischen Bereich, in der
Industrie oder gar im Sport [27]. Sie sind notwendig zu Lösung der meisten
Strömungsprobleme, da diese mit analytischen Methoden aufgrund der Kom-
plexität der Randbedingungen nur sehr aufwendig oder gar nicht mehr lösbar
sind. Grundlage für numerische Strömungssimulationen ist stets ein physi-
kalisches Modell, welches für die Implementierung diskretisiert wird. In der
Strömungsmechanik werden Fluide als makroskopische Phänomene betrach-
tet. Zwar wird das betrachtete Fluid als eine Menge von infinitesimalen Flui-
delementen verstanden, diese sind jedoch noch immer weit größer als die ent-
haltenen Moleküle bzw. deren Abstände voneinander. Für jedes Fluidelement
innerhalb eines Gesamtvolumens V wird eine Dichte ρ, der Druck p und ei-
ne Geschwindigkeit ~v definiert. Unter Annahme eines nicht komprimierbaren
Fluides, als welches Flüssigkeiten meist näherungsweise angenommen werden
können, gilt ρ = const und es kann die inkompressible Navier-Stokes-Gleichung
durch

ρ~̇v = −∇p+ η∆~v + ~F (2.2)

angegeben werden. Hierbei ist ∆ = ∇ · ∇ der Laplace-Operator und ~̇v die
partielle Ableitung der Geschwindigkeit des Fluidelements nach der Zeit. Die
Gleichung enthält neben dem Einfluss externer Kräfte ~F , wie etwa die Gra-
vitation, noch die Scherviskosität η. Um diesen makroskopischen Ansatz in
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2 Grundlagen

einer Simulation zu verwenden, müssen aufwendig Laplace-Gleichungen für je-
den diskreten Zeitschritt gelöst werden [24]. Bei einem mikroskopischen Ansatz
sind dagegen die kleinsten Partikel eines Fluides Gegenstand der Betrachtung.
Es müssen also die verschiedensten Wechselwirkungen zwischen Molekülen be-
trachtet werden und daraus noch die notwendigen Informationen wie etwa
der Druck abgeleitet werden. Dies stellt nicht zuletzt aufgrund der riesigen
erforderlichen Menge von Partikeln oft keine sinnvolle Möglichkeit für eine
durch Ressourcen begrenzte Computersimulation dar. Zwischen den beiden
Skalen liegt die mesoskopische Betrachtung. Dafür werden mehrere Partikel
als Einheit angenommen und deren gemeinsames Verhalten betrachtet. Die-
se Idee wird durch die Boltzmann-Gleichung aufgegriffen und in der Lattice-
Boltzmann-Methode (LBM) implementiert. Die LBM vereint die Vorteile der
mikro- und makroskopischen Betrachtung: sie lässt sich auf beliebig komplexe
Simulationsdomänen anwenden und bildet wichtige Strömungsmerkmale wie
Inkompressibilität und turbulente Strömungen ab. Vielmehr kann die Navier-
Stokes-Gleichung unter gewissen Bedingungen aus der Boltzmann-Gleichung
abgeleitet werden [24]. Wie bei jedem numerischen Verfahren muss auch bei
der LBM von Ungenauigkeiten in der Berechnung ausgegangen werden, die
von der Parametrisierung des Modells abhängig sind. Darauf wird in Unterka-
pitel 2.2.4 eingegangen. Bezüglich der Viskosität wird ferner zwischen newton-
schen und nicht-newtonschen Fluiden unterschieden. Bei Blut handelt es sich
um ein nicht-newtonsches Fluid, d. h. die Viskosität, also die Zähflüssigkeit,
hängt von der auf das Fluid ausgeübten Kraft ab und ist insbesondere nicht
konstant. Im Prinzip genügt kein Fluid exakt der Definition von newtonschen
Fluiden, dennoch wird Wasser unter Normalbedingungen als ein solches an-
genommen. Selbst Blut genügt weitestgehend der Physik newtonscher Fluide
und wird in der Literatur und im Folgenden als ein solches modelliert [23].

2.2.1 Die Boltzmann-Gleichung

Grundlage für die LBM ist die Boltzmann-Gleichung, deren Herleitung nun
folgt. Fundamental für diesen mesoskopischen Ansatz ist eine Verteilungsfunk-
tion f(~x,~v, t), da Partikel Gegenstand der Betrachtung sind. Sie kann als ei-
ne Verallgemeinerung der Dichte ρ(~x, t) angesehen werden, welche ebenfalls
die mikroskopische Partikelgeschwindigkeit ~v berücksichtigt. Im Gegensatz zu
ρ(~x, t), welche die Massendichte im physikalischen Raum angibt, repräsentiert
f(~x,~v, t) zusätzlich die Massendichte im Geschwindigkeitsraum. Sie gibt al-
so die Dichte aller Partikel an Position ~x zur Zeit t mit Geschwindigkeit ~v
an [18]. Wird von kräftefreien Gaspartikeln in einem sonst leeren aber be-
grenzten Raum ausgegangen, kann angenommen werden, dass sich nach aus-
reichender Zeit eine bestimmte, als konstant anzunehmende Verteilung der
Gaspartikel bzw. Moleküle eingestellt hat. Das System befindet sich also im
Gleichgewicht, weshalb die daraus resultierende Verteilung f eq(~x,~v, t) auch
Gleichgewichtsverteilung genannt wird. Die Funktionswerte der Verteilung sind
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2.2 Numerische Strömungssimulationen

zu diesem Zeitpunkt nicht notwendig für das weitere Verständnis und werden
daher als gegeben angenommen. Nun kann betrachtet werden, wie sich die
Verteilungsfunktion f(~x,~v, t) über die Zeit entwickelt. Bildet man das totale
Differential in Bezug zur Zeit t so erhält man

df

dt
=

(
∂f

∂t

)
dt

dt
+

(
∂f

∂xα

)
dxα
dt

+

(
∂f

∂vα

)
dvα
dt
. (2.3)

Das α denotiert dabei einen festen aber beliebigen Index aller vektoriellen
Größen, also beispielsweise xα ∈ {xx, xy, xz} und wird verwendet, da sich die
so implizierten Gleichungen anderweitig nicht unterscheiden. Die rechte Seite
kann mit dt

dt
= 1, dxα

dt
= vα und dvα

dt
= Fα

ρ
weiter vereinfacht werden zu

∂f

∂t
+ vα

∂f

∂xα
+
Fα
ρ

∂f

∂vα
= Ω(f). (2.4)

Dies ist die Boltzmann-Gleichung, wobei Ω(f) = df
dt

die übliche Notation
für totale Differentiale darstellt [18]. Für kräftefreie Systeme, also Fα = 0,
vereinfacht sich die Gleichung weiter zu

∂f

∂t
+ vα

∂f

∂xα
= Ω(f) (2.5)

Zwar ist bei den Messungen immer auch die Gravitation als äußere Kraft vor-
handen, die Kräfte sind jedoch vernachlässigbar klein in Relation zu den hohen
Geschwindigkeiten der Flüssigkeit, welche die sehr kleinen Phantome in kur-
zer Zeit durchströmt. Ebenfalls existiert kein Temperaturgradient, der einen
relevanten Effekt haben könnte.

Gleichung 2.5 kann nun als Advektionsgleichung verstanden werden. Die lin-
ke Seite beschreibt die Veränderung der Partikelverteilung in Abhängigkeit der
Geschwindigkeiten ihrer Partikel und die rechte Seite die lokale Neuverteilung
aufgrund von Kollisionen der Partikel. Aus diesem Grund wird der Term Ω(f)
auch Kollisionsoperator genannt. Kollisionen innerhalb der betrachteten Ska-
lierung genügen der Newtonschen Mechanik und erhalten Masse, Impuls, sowie
die Gesamtenergie und innere Energie [18].

In der LBM wird üblicherweise der BKG-Kollisionsoperator2 verwendet. Die-
ser ist gegeben durch

Ω(f) = −1

τ
(f − f eq) (2.6)

und beinhaltet die Relaxationszeit τ von der gegenwärtigen Verteilung f zur
Gleichgewichtsverteilung f eq. Dies ist zugleich der simpelste Operator, der die
oben genannten Größen erhält. Die Wahl der Relaxationszeit τ spielt für die
Stabilität und Genauigkeit von Simulationen eine große Rolle und wird in
Abschnitt 2.2.4 erläutert. Der Operator wurde mit dem Smagorinsky-Modell

2BKG: benannt nach seinen Erfindern, Bhatnagar–Gross–Krook
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verbessert, sodass turbulente Strömungen auch bei geringen Auflösungen sta-
bil simuliert werden können, welches somit auch für diese Arbeit verwendet
wird [16, 26]. Dabei wird aus der molekularen Relaxationszeit τ und einer tur-
bulenten Komponente eine effektive Relaxationszeit zusammengesetzt. Für de-
ren Berechnung muss ein Parameter, die sogenannte Smagorinsky-Konstante,
festgelegt werden.

Abbildung 2.1: Das D3Q19-Schema [16]. Die umliegenden Zellen in Pfeilrichtung
werden für den Informationsaustausch verwendet.

2.2.2 Die Lattice-Boltzmann-Methode

In der Lattice-Boltzmann-Methode (LBM) werden Gleichung 2.5 und 2.6 zu-
nächst vereint zu

∂f

∂t
+ vα

∂f

∂xα
= −1

τ
(f − f eq). (2.7)

Ferner wird die Simulationsdomäne durch ein uniformes, regelmäßiges Gitter
mit Spacing ∆x diskretisiert. Die so entstehenden Einheiten des diskretisierten
Raumes werden als Zellen bezeichnet. Diese müssen nun für den Austausch
an Informationen, also Partikeln und deren Eigenschaften, in Beziehung zu-
einander gesetzt werden. Die übliche Nomenklatur zur Charakterisierung der
Beziehungen ist dabei DnQm, wobei n ∈ {1, 2, 3} die Anzahl der Dimensionen
angibt. Die Diskretisierung des Geschwindigkeitsraumes v wird durch m ange-
geben und gibt somit zeitgleich die Anzahl der Verbindungen zu benachbarten
Zellen an. Die möglichen Werte fürm sind abhängig von n. Für die vorliegenden
Daten gilt also n = 3 und für m kommen prinzipiell mehrere Möglichkeiten
in Betracht, namentlich 13, 15, 19 und 27 [18]. Bei Letzterer besteht damit
eine Verbindung zu jeder der 26 umliegenden Zellen, wobei zusätzlich die In-
formationen der Zelle selbst mitberücksichtigt werden. Die Laufzeit und der
Speicherbedarf der Simulation steigen jedoch zusammen mit der Genauigkeit
der Approximation in m. Als Kompromiss wird häufig und daher auch für
diese Arbeit m = 19 für n = 3 gewählt [16]. Das sich so ergebende Sche-
ma D3Q19 ist in Abbildung 2.1 dargestellt. Die Zellen repräsentieren eine
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2.2 Numerische Strömungssimulationen

Partikelverteilung fi(~x, t) mit i = 1..m auf mesoskopischer Skala. Durch das
gleichmäßige Gitter kann die Annahme getroffen werden, dass innerhalb ei-
nes diskreten Zeitschrittes ∆t jedes Partikel immer exakt eine der im Sinne
des DnQm-Schemas benachbarten Zellen erreichen kann. Eine nicht uniforme
bzw. nicht gleichmäßige Diskretisierung ist denkbar, jedoch nicht üblich, da
insbesondere der sonst inhärente Vorteil der Parallelisierbarkeit entfällt. Glei-
chung 2.7 wird ferner als gültig entlang jeder der m definierten Richtungen
angenommen, woraus sich

∂fi
∂t

+ viα
∂fi
∂xα

= −1

τ
(fi − f eqi ) (2.8)

ergibt. Diese kann mittels finiter Differenzen approximiert werden durch

fi(~x+ ~vi∆t, t+ ∆t)− fi(~x, t)
∆t

= −1

τ

(
fi − f eqi

)
(2.9)

und umgestellt werden zu

fi(~x+ ~vi∆t, t+ ∆t) = fi(~x, t)−
∆t

τ

(
fi − f eqi

)
. (2.10)

Dies ist die sogenannte Lattice-Boltzmann-Gleichung in Kombination mit
dem diskreten BKG-Kollisionsoperator [18, 24]. Obwohl es sich dabei eigentlich
um eine Approximation der ersten Ordnung in Bezug zur Zeit handelt, bie-
tet diese dennoch dieselbe Genauigkeit wie eine Approximation zweiter Ord-
nung [18].

Die so erhaltene Gleichung kann nun erneut in zwei logischen Komponen-
ten zerlegt werden: die Kollisions- und Strömungsschritt3. Bei der Berechnung
jedes Zeitschrittes ∆t erhält also jede Partikelpopulation fi(~x, t) einen Anteil
aus dem Kollisions- bzw. Relaxationsschritt, also dem Anstreben der Gleich-
gewichtsverteilung f eqi (~x, t). Dieser Schritt findet gänzlich lokal für jede Zelle
statt, es müssen also keine Informationen aus umliegenden Zellen verwendet
oder verändert werden. Der Zustand f ?i (~x, t) der Verteilung nach dem Kollisi-
onsschritt kann also durch

f ?i (~x, t) = fi(~x, t)−
∆t

τ

(
fi(~x, t)− f eqi (~x, t)

)
(2.11)

angegeben werden. Im Schritt des Propagierens verteilt sich die neue Parti-
kelpopulation f ?i (~x, t) dann auf die umliegenden, durch das DnQm-Schema
definierten, Zellen. Für diese gilt somit

fi(~x+ ~vi∆t, t+ ∆t) = f ?i (~x, t), (2.12)

sodass es sich dabei um keine lokale Operation mehr handelt, da die umlie-
genden Zellen modifiziert werden [18]. Diese beiden Schritte können beliebig
wiederholt werden, bis ein Abbruchkriterium die Simulation beendet.

3Strömungschritt: von engl. streaming step
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2 Grundlagen

Fluid

Wand

~v(t) ~v(t+ ∆t)

∆t

Abbildung 2.2: Skizze eine Partikelpopulation (orange), welche mit einer starren
Wand (grau) kollidiert, nachdem sie über eine Verbindung (blau)
mit Geschwindigkeit ~v in Richtung einer benachbarten Zelle pro-
pagiert. Bei dem Rückprallansatz gilt ~v(t) = −~v(t+∆t). Es findet
also keine Bewegung unmittelbar entlang der Wand statt, womit
Haftung modelliert wird. Entlehnt an [18].

Dabei können zu jedem Zeitschritt t die makroskopischen Größen, also die
Massendichte ρ durch

ρ(~x, t) =
m∑
i=1

fi(~x, t) (2.13)

und die Geschwindigkeit ~u durch

~u(~x, t) =
1

ρ(~x, t)

m∑
i=1

~vi · fi(~x, t) (2.14)

aus der Partikelpopulation berechnet werden. Aus diesen lassen sich dann wei-
tere Größen ableiten.

2.2.3 Randbedingungen

Ein weiterer Aspekt in der LBM sind Randbedingungen. Dabei sind zum einen
das Verhalten der Partikel beim Kollidieren mit der Simulationsgeometrie, zum
anderen die Bedingungen beim Ein- und Auslass der Partikel zu betrachten.
Auch hierfür gilt es, jeweils ein möglichst geeignetes Modell für das vorliegen-
de Problem zu wählen. Es kann die Eigenschaft festgehalten werden, dass die
Simulationsgeometrie (Gefäßwand) im Allgemeinen beliebig ist. Sie verläuft
also insbesondere weder genau durch das Zentrum, noch genau zwischen den
Zellen. Bei der Kollision von Partikeln mit der Gefäßwand wird üblicherweise
ein Rückprallansatz4 gewählt, skizziert in Abbildung 2.2 [18]. Die Implikation
ist das Modellieren einer impermeablen, also für das Fluid undurchlässigen
Gefäßwand, sowie das Ausbleiben einer transversalen Bewegung zwischen den

4Rückprallansatz: von engl. bounce-back
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2.2 Numerische Strömungssimulationen

uc
l

(a) Seitenansicht

uc

(b) Querschnitt

Abbildung 2.3: Skizze eines parabolisches Poiseuille-Geschwindigkeitsprofils (rot)
in einer zylindrischen Simulationsgeometrie (schwarz) mit charak-
teristischer Länge l. Die Länge der Pfeile (links) bzw. die Inten-
sität der roten Farbe (rechts) kodiert die Magnitude der lokalen
Geschwindigkeit, die in uc ihr Maximum hat.

beiden Kollisionsteilnehmern. Für die Gefäßwand werden also Haftrandbedin-
gungen5 gewählt [18]. Diese Methode ist in der Implementierung numerisch
stabil, jedoch nur anwendbar, wenn die Geometrie durch treppenartige For-
men approximiert wird, damit eine Ausrichtung am Gitter vorliegt. Diese
Methode kann für nicht entsprechend ausgerichtete Geometrien durch lineare
Interpolation verbessert werden, wie durch Bouzidi et al. [1] gezeigt wurde.
Dieser Ansatz wurde zudem in dem verwendet Framework OpenLB imple-
mentiert [17] und in einer klinischen Studie validiert [23], sodass er für diese
Arbeit ebenfalls gewählt wird. Durch die genannten Randbedingungen können
zudem bewegte Wände modelliert werden. Dabei wird abhängig von der Be-
wegung der Wand relativ zum Fluid eine Geschwindigkeitskomponente hinzu-
gefügt, um das entsprechende Verhalten zu simulieren. Dies sollte jedoch nicht
mit deformierbaren Wänden verwechselt werden, deren Modellierung weitaus
komplexer ist und daher nicht Teil dieser Arbeit ist. Zudem werden vom ver-
wendeten Framework bisher nur starre Wände unterstützt. Weitere Randbe-
dingungen werden an den Einlässen und Ausflüssen der Simulation gewählt.
Für die Einlässe wird unter erneuter Annahme eines newtonschen Fluides ein
Poiseuille-Geschwindigkeitsprofil definiert, welches in Abbildung 2.3 skizziert
ist, dessen Maximum durch uc angegeben sei. Für die Ausläufe wird als Be-
dingung konstanter Druck gefordert.

2.2.4 Parametrisierung

Um eine Strömungssimulation basierend auf der LBM zu konfigurieren, muss
neben verschiedenen Modellentscheidungen (wie im vorherigen Unterkapitel
diskutiert) noch eine Parametrisierung erfolgen. Die zu berücksichtigenden

5Haftungseigenschaften: von engl. no-slip

11



2 Grundlagen

Abbildung 2.4: Der Effekt unterschiedlicher Werte für die Smagorinsky-Konstante
auf turbulente Strömung bei sonst identischen Bedingungen [16].

Parameter sind hierbei im Folgenden aufgeführt. Mit ? annotierte Parame-
ter geben dabei die entsprechenden dimensionslosen Größen an, mit denen in
der LBM typischerweise gearbeitet wird.

• Die Gitterkonstante ∆x definiert den Abstand zwischen zwei benach-
barten Zellen, angegeben in Metern m. Sie wird üblicherweise anhand
der charakteristischen Länge l der Simulationsgeometrie, welche in etwa
den größten enthaltenen Durchmesser angibt, sowie deren Auflösung N
berechnet, also ∆x = l

N
.

• Die physikalische Länge eines diskreten Zeitschrittes ∆t wird in Sekunden
s angegeben.

• Die BGK-Relaxationszeit τ wird ebenfalls in Sekunden angegeben. Oft-
mals wird auch der dimensionslose Relaxationsparameter τ ? verwendet,
welcher über τ ? = τ

∆t
mit der Relaxationszeit in Beziehung steht [18].

• Die physikalische Dichte ρ des Fluides wird in kg m−3 angegeben und
kann der Literatur entnommen werden.

• Die dimensionslose Dichte ρ? ist im Falle eines inkompressiblen Fluides
im Gegensatz zu der physikalischen Dichte ρ Fluktuationen unterworfen,
welche sich in der LBM auf Druckunterschiede beziehen. Sie fungiert da-
her lediglich als Referenzwert und kann letztlich einen beliebigen Wert
erhalten. Ihr Durchschnittswert wird üblicherweise auf den Wert 1 ge-
setzt [18].

12



2.2 Numerische Strömungssimulationen

• Die Scherviskosität des Fluides η wird in kg m−1 s−1 angegeben. Alterna-
tiv kann auch die kinematische Viskosität ν über die Beziehung η = ν ·ρ,
angegeben in m2 s−1, verwendet werden. Die temperaturabhängigen Wer-
te sind experimentell ermittelt worden und können der Literatur entnom-
men werden.

• Die typisch simulierte Geschwindigkeit uc bzw. ihr dimensionsloses Ge-
genstück u?c = uc

∆t
∆x

ist eine Ausgabe der Simulation, kann jedoch auch
für Randbedingungen und somit ebenfalls als Eingabe verwendet werden,
wie beispielsweise in Abbildung 2.3 skizziert.

• Die dimensionslose Schallgeschwindigkeit c?s wird üblicherweise und auch
im verwendeten Framework auf den Wert

√
1/3 ≈ 0.577 gesetzt [17]. Für

inkompressible Fluide müssen die simulierten Geschwindigkeiten deutlich
kleiner sein, also u?c � c?s [18].

• Die Smagorinsky-Konstante Cs, welche üblicherweise auf den Wert 0.25±
0.2 festgelegt wird, definiert das Verhalten turbulenter Strömung. Höhere
Werte führen dabei zu begradigten Turbulenzen, zu sehen in Abbil-
dung 2.4.

Die Parameter sind dabei über

ν =
η

ρ
= c?2s

(
τ ? − 1

2

)
∆x2

∆t
(2.15)

in Beziehung zueinander gesetzt [18]. Es existieren folglich prinzipiell belie-
big viele Konfigurationen aus τ ?, ∆t und ∆x, um die physikalische korrekte
Viskosität zu erhalten. Die Wahl ist jedoch nicht beliebig in Hinblick auf die
Genauigkeit, Stabilität und Effizienz der Simulation. Für eine hohe Genauig-
keit muss im Wesentlichen beachtet werden, dass der räumliche und zeitliche
Diskretisierungsfehler mit ∆x2 bzw. ∆t2 skaliert [18]. Die beiden sollten also so
klein wie möglich gewählt werden, was jedoch die Effizienz stark beeinträchtigt.
Bei der Anpassung von ∆x oder ∆t sollte im vorliegenden Falle von inkom-
pressiblen Fluiden die sogenannte akustische Skalierung ∆t ∝ ∆x eingehalten
werden [18]. Ferner gelten weitere Einschränkungen, die jedoch die Aussage an
dieser Stelle nicht ändern. Für die Effizienz sei unmittelbar angeführt, dass die
Gesamtlaufzeit T der Simulation und der Speicherbedarf M im vorliegenden,
dreidimensionalen Fall durch

T ∝ 1

∆x3 ·∆t
,M ∝ 1

∆x3
(2.16)

mit ∆x bzw. ∆t skalieren [18]. Die untere Grenze der beiden Parameter hängt
also von der verwendeten Hardware und der zur Verfügung stehenden Zeit ab.
Generell sollte ∆x jedoch so klein gewählt werden, dass alle Strömungsmerkmale
wie Turbulenzen ausreichend aufgelöst werden können. Wie diese ausfallen,
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2 Grundlagen

hängt von der Simulationsgeometrie mit charakteristischer Länge l ab und
wird durch die dimensionslosen Reynolds-Zahl Re gekennzeichnet. Diese ist
definiert durch

Re =
l · uc
ν

, (2.17)

wobei hohe Werte auf turbulente und niedrige Werte auf laminare Strömungen
hindeuten. Eine andere, ähnliche Geometrie weißt dabei identisches Turbu-
lenzverhalten auf, wenn auch diese Kennzahl den gleichen Wert hat. Liegt
eine hohe Reynolds-Zahl vor, ist ∆x folglich entsprechend klein zu wählen,
damit die Simulation stabil bleibt. Instabilität ist in der LBM als das expo-
nentielle Wachstum numerischer Fehler definiert, die irgendwann zu ungültigen
Werten (NaN 6) führen. Eine in diesem Sinne stabile Simulation zu erreichen,
ist daher von großer Bedeutung und kann ferner durch weitere Eigenschaf-
ten begünstigt werden. Zum einen sollte der Relaxationsparameter τ ? nicht zu
nah an 1

2
gewählt werden, zum anderen sollten je nach erwarteter, typischer

Geschwindigkeit uc die Bedingungen

u?c <

{
α(τ ? − 1

2
) wenn τ ? < 0.55

0.4 sonst
(2.18)

beachtet werden, wobei α eine numerische Konstante in der Größenordnung
von 1

8
ist [18]. Bei allen Beschränkungen handelt es sich jedoch nur um grobe

Richtlinien, die Simulationen können dennoch instabil werden.

Damit ist diesem Unterkapitel zweifelsfrei zu entnehmen, dass es viele Para-
meter gibt, welche einen noch unbekannten Effekt auf den Simulationsverlauf
in Kombination mit anderen Parametern haben. Insbesondere ist selbst bei
einer wohldurchdachten Parametrisierung nicht klar, wie gut die resultierende
Simulation die Wirklichkeit repräsentiert. Aus diesem Grund werden im Rah-
men dieser Arbeit zunächst Ensembles von Simulationen mit einer Vielzahl von
Parameterkonfigurationen und -kombinationen angefertigt, um deren Einfluss
auf das Simulationsergebnis einschätzen zu können.

2.3 Klassische Multidimensionale Skalierung

Kernpunkt dieser Arbeit ist der Vergleich mehrerer Simulationsläufe mit ge-
messenen Daten zwecks Optimierung des verwendeten Modells bzw. der Pa-
rametrisierung. Für jeden Simulationslauf können dabei mehrere Zeitschritte
vorhanden sein. Es soll letztlich eine Visualisierung gewählt werden, bei der
jeder Zeitschritt jedes Simulationslaufs bzw. der gemessenen Daten mit jedem
anderen verglichen werden kann. Zunächst ergibt sich aus dieser Betrachtung

6NaN: Not a Number - eine nicht darstellbare Zahl

14



2.3 Klassische Multidimensionale Skalierung

eine Distanzmatrix

D =


d11 . . . d1k d1k+1 . . . d1n

d21 . . . d2k d2k+1 . . . d2n
...

...
...

. . .
...

dn1 . . . dnk dnk+1 . . . dnn

 (2.19)

mit Einträgen dij, wobei n die Gesamtzahl aller Zeitschritte aus allen Si-
mulationsläufen angibt. Die Distanzen können auf Grundlage verschiedener
Strömungseigenschaften und Metriken berechnet und somit als (Un)Ähnlich-
keiten zu den anderen Daten verstanden werden. Die Einträge di1 bis dik
sind dabei beispielsweise den Ähnlichkeiten zwischen dem ersten Simulati-
onslauf mit k Zeitschritten und einem beliebigen Zeitschritt i zuzuordnen.
Aus der Verwendung von Metriken folgt zudem die Symmetrie der Matrix D,
sodass letztlich nur die obere, bzw. untere Dreiecksmatrix berechnet werden
muss. Um nun eine Visualisierung zu generieren, welche die Distanzen ent-
sprechend berücksichtigt, bietet sich Multidimensionale Skalierung (MDS) an.
Grundsätzlich kann mit dieser Technik ein hochdimensionaler Raum mit Di-
mension n in einen Raum mit niedrigerer Dimensionalität m projiziert werden.
Dafür wird für jeden Zeitschritt i repräsentativ eine Position im Zielraum ge-
funden, sodass dessen Abstand zu den projizierten Positionen aller Zeitschritte
j die korrespondierenden Distanzen dij widerspiegelt. Da die Visualisierung im
Wesentlichen von Domainexperten verstanden werden soll, wird als Abstands-
maß die euklidische Distanz gewählt. Die so verwendete Technik wird auch
klassisches MDS genannt. Auf die Wahl von m und die Berechnung der Di-
stanzen wird in Kapitel 4 eingegangen. Hier wird zunächst der MDS-Ansatz
nach Wickelmaier beschrieben [28]. Dieser wurde bereits erfolgreich auf Da-
ten angewendet, welche den Vorliegenden ähnlich sind, d. h. es liegen viele
Simulationsläufe (O(10)) mit jeweils vielen Zeitschritten (O(100)) und somit
Distanzmatrizen mit großen n vor [6, 19]. Für die Projektion wird nun zur
Distanzmatrix D eine Koordinatenmatrix X gesucht, deren Berechnung wie
folgt zusammengefasst werden kann.

1. Berechnen der quadrierten Distanzen P = [d2
ij].

2. Anwenden doppelter Zentrierung mit B = −1
2
·J ·P ·J , wobei J = I− 1

n
·U .

I sei die Einheitsmatrix und U die Matrix, deren Einträge ausschließlich
den Wert 1 haben.

3. Extrahieren der m größten, positiven Eigenwerte λ1, . . . , λm von B und
der korrespondierenden Eigenvektoren e1, . . . , em.

4. Sei Em die Matrix aus den m Eigenvektoren und Λm die Diagonalmatrix
der m Eigenwerte, dann lässt sich die gesuchte Matrix berechnen durch
X = Em · Λ1/2

m .
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2 Grundlagen

Die erhaltene Matrix X ist dabei nur eine mögliche räumliche Konfiguration,
welche die Distanzmatrix D widerspiegelt. Damit ist die Projektion insbe-
sondere nicht interpretationsfähig bezüglich Rotation und Spiegelung, sowie
uniformer Skalierung.

(a) Netzwerkdarstellung des Datenflusses
mit dessen Ausgabe im dazugehörigen Can-
vas.

(b) Darstellung der Links (hellgrau) zum
Synchronisieren der Kameraeinstellungen,
sowie die Einstellungsmöglichkeiten von
den in blau markierten Prozessoren.

Abbildung 2.5: Zu sehen ist ein simples Beispielnetzwerk in Voreen. Ein Volumen-
datensatz wird geladen und mittels Raycasting visualisiert.

2.4 Das Voreen-Framework

Voreen (Volume Rendering Engine) ist ein Framework zur Visualisierung me-
dizinischer Volumendaten [22]. Es wurde von der Arbeitsgruppe Visualisie-
rung und Computergrafik (VisCG) an der Universität Münster initiiert und
wird zum Zeitpunkt der Erstellung dieser Arbeit kollaborativ von der Arbeits-
gruppe Pattern Recognition and Image Analysis(PRIA) sowie VISualization
& graphIX (VISIX) weiterentwickelt.

Das Framework basiert auf der Programmiersprache C++ und der OpenGL-
API und ist somit plattformunabhängig. Die bereitgestellte Funktionalität ist
in Module unterteilt, welche das Basis-Framework erweitern. Ferner existiert ei-
ne graphische Benutzeroberfläche basierend auf Qt5, welche die implementierte
Datenfluss-Netwerk-Metapher repräsentiert. Komplexe Aufgaben können mit
so einem Netzwerk abgebildet werden, welches selbst aus meist simplen Kom-
ponenten besteht. Konkret handelt es sich um einen gerichteten Datenfluss, bei
dem die Daten über Verbindungen von einem Knoten zum nächsten, im Folgen-
den Prozessoren genannt, weitergereicht, bzw. dort weiterverarbeitet werden.
Die unterschiedlichen Datentypen sind dabei farblich kodiert: rote Anschlüsse
akzeptieren Volumendaten, blaue hingegen Bilddaten. Viele weitere Datenty-
pen sind implementiert.
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Dies sei anhand eines Beispielnetzwerks, zu sehen in Abbildung 2.5, er-
klärt. Beginnend bei einer Datenquelle (VolumeSource) wird beispielhaft der
Nukleon-Volumendatensatz eingeladen und über ihren ausgehenden Anschluss
zur Verfügung gestellt. Dieser Datensatz wird nun für ein Raycasting verwen-
det, hinter dessen Ausgabe noch ein Hintergrund mit von grau nach weiß ver-
laufendem Gradienten gelegt wird. Das Resultat wird über ein Canvas, dem
Endpunkt des Netzwerks, ausgegeben. Jeder Prozessor besitzt ferner einige
Einstellungsmöglichkeiten zur Konfiguration seiner eigenen Logik. So lässt sich
für die Datenquelle der Pfad bestimmen und beim Raycaster beispielsweise
die Transferfunktion einstellen. All diese Einstellungen können auch über so-
genannte Links miteinander synchronisiert werden. Das Netzwerk wird dabei
nach jeder Änderung bzw. in regelmäßigen Abständen in Datenflussrichtung
ausgewertet. Das Ausrichten der Kamera durch die Interaktion mit der Maus
führt so beispielsweise umgehend zu einer Auswertung des Netzwerks, wodurch
die Ausgabe entsprechend aktualisiert wird. Neben der grafischen Ausgabe ist
auch das Schreiben von Dateien möglich und auch Python-Skripte können in
den Datenfluss integriert werden. Des Weiteren sei auf die Möglichkeit von
asynchronen und parallelisierten Berechnungen hingewiesen, um andere Teile
des Netzwerkes nicht unnötig zu beeinträchtigen. Mit diesem Framework lässt
sich damit prinzipiell jedes Problem in ein Netzwerk überführen und daraus
eine Anwendung mit Benutzeroberfläche erstellen. Dies ist natürlich nicht für
jedes Problem sinnvoll, im Rahmen dieser Arbeit wird Voreen jedoch insbeson-
dere aufgrund der intensiven Arbeit mit Volumendaten gewählt. Damit kann
bereits einige Funktionalitäten als gegeben angenommen werden, da es sich
wie bereits erwähnt bei den meisten Prozessoren um triviale Operationen auf
Volumen- und Bilddaten wie beispielsweise Schwellenwertoperationen handelt.

Um die Arbeit von Domainexperten zu unterstützen, können die mit der An-
wendung erstellten und konfigurierten Netzwerke in sogenannten Workspaces
gespeichert und zusammen mit einer Dokumentation weitergereicht werden. Da
die Netzwerke schnell an Größe zunehmen und damit an Übersichtlichkeit ver-
lieren können, kann für den Endanwender ein sogenannter Anwendungsmodus
konfiguriert werden. Dieser stellt nur die wichtigsten Einstellungsmöglichkeiten
und nur die wesentliche Ausgabe des Netzwerks in möglichst intuitiver Weise
zur Verfügung.
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3 Verwandte Arbeiten

In diesem Kapitel werden aktuelle Arbeiten aus thematisch verwandten Be-
reichen vorgestellt und diskutiert. Dazu gehören numerischen Strömungssimu-
lationen, die Verarbeitung von Ensembles und die Assimilation von mittels
4D-Phasenkontrast-MR akquirierten Blutflussdaten. Dadurch soll zum einen
die Wahl der verwendeten Methoden begründet und motiviert, zum anderen
ein Überblick über den aktuellen Forschungsstand gegeben werden.

Strömungssimulationen In dieser Arbeit wird die Lattice-Boltzmann-Methode
(LBM) für das Durchführen numerischer Strömungssimulationen verwendet.
Es existiert jedoch eine ganze Bandbreite alternativer, bereits etablierter Me-
thoden. Die bekanntesten sind das Finite-Elemente-Verfahren, Finite-Volumen-
Verfahren sowie sogenannte Navier-Stokes-Solver. Dabei müssen aufwendige
partielle Differentialgleichungen gelöst werden. Im Gegensatz dazu ist die LBM
ist ein relativ junges Verfahren, welches zunehmend an Popularität gewinnt [18].
Grund dafür ist die rasante Entwicklung der Hardware und insbesondere die
Zunahme von parallelen Berechnungen, da das Verfahren durch die vielen un-
abhängigen, lokalen Operationen inhärent parallelisierbar ist. Die Communi-
ty hat im Zuge dessen das OpenLB-Framework geschaffen, welches in dieser
Arbeit verwendet wird [17]. Ein anderes bekanntes Framework zum Konfi-
gurieren von Strömungssimulationen ist OpenFOAM [13], welches ein breites
Spektrum an Solvern bietet. Die Simulationsdomäne wird dabei, im Gegensatz
zum regelmäßigen Gitter in der LBM, durch Tetraeder ausgeschöpft, wodurch
der Vorteil der Parallelisierbarkeit gemindert wird und das Konzept eine auf-
wendige Einarbeitung erfordert. Der LBM wohnt dagegen ein verhältnismäßig
simples Konzept inne, was jedoch keine Einschränkung für die Anwendbar-
keit bedeutet. So konnte das Verfahren bereits auf Simulationsdomänen hoher
Komplexität, wie etwa auf dem Aortenbogen und Aneurysmen, im Zusam-
menspiel mit 4D-Phasenkontrast-MR-Daten unter Berücksichtigung des Herz-
zyklus validiert werden [9, 10, 16, 23].

Ensembleansatz Der in dieser Arbeit verfolgte Ansatz, ein Ensemble von
Simulationen zu generieren, wurde in ähnlicher Form bereits im Framework
HemeLB [21] umgesetzt. Dabei wurde eine Simulationsgeometrie anhand von
statistischen Daten verschiedener Patienten, wie etwa der Puls und Blutdruck,
konfiguriert und jeweils eine Simulation generiert. Die Ergebnisse wurden an-
hand der Position und Stärke hoher Scherkräfte an den Gefäßwänden mitein-
ander verglichen. In-vivo Messungen des Blutflusses haben dabei jedoch nicht
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stattgefunden.
Jiang et al. [14] haben in ihrer Arbeit hingegen mehrere Simulation unter

Verwendung derselben Geometrie durchgeführt, welche durch die Segmentie-
rung von mittels 4D-Phasenkontrast-MR gemessenen Daten akquiriert wurde.
Die Datensätze wurden, wie zuvor, anhand der Scherkräfte an den Gefäßwänden
miteinander verglichen. Dabei konnten hohe Korrelationen zwischen simulier-
ten und gemessenen Daten nachgewiesen werden. Zusätzlich wurde von den
Autoren eine Metrik zum Vergleich von Vektorfeldern entwickelt, welche in
Kapitel 4 gegen weitere Verglichen wird. Dies ist ferner ein Beispiel für die
Verwendung eines Navier-Stokes-Solvers, anstatt der LBM.

Datenassimilation Die Assimilation von 4D-Phasenkontrast-Daten mittels
numerischer Strömungssimulationen ist ebenfalls ein sehr junger Forschungs-
bereich. De Hoon et al. [11] haben ein auf der inkompressiblen Navier-Stokes-
Gleichung (vgl. Gleichung 2.2) basierendes Simulationsverfahren definiert, wel-
ches gemessene Daten als Eingabe verwendet. Somit lässt sich die Simulation
steuern, indem für jeden simulierten Zeitpunkt, zu dem keine Messung vor-
handen ist, die Domäne durch einen Korrekturterm wieder in Richtung der
gemessenen Daten verschoben wird. Dies wurde von den Autoren mit einer
Federkraft verglichen, welche die Simulation hin zu den gemessenen Daten
lenkt. Das Verfahren wurde ferner von denselben verbessert, indem die Simu-
lation durch die Reversibilität der Navier-Stokes-Gleichung sowohl vorwärts
als auch rückwärts durchgeführt wurde [12]. Das Ergebnis wurde sowohl ge-
gen synthetische Daten, als auch gegen eine ungesteuert Simulation verglichen.
Dem diente erneut die Scherkräfte an der Wand sowie der lokale Unterschied
der Magnitude und Richtung über den gesamten Querschnitt des verwendeten
Aorten-Datensatzes.

Funke et al. [7] verwendeten ein ebenfalls auf der inkompressiblen Navier-
Stokes-Gleichung basierendes Optimierungsverfahren, um die initialen Rand-
bedingungen des Modells in den mittels Phasenkontrast-MR akquirierten Da-
ten wiederherzustellen. Das Verfahren stellte sich als sehr robust im Falle von
2D- und 3D-Daten heraus. Ein Vergleich der gemessenen zu den simulierten
und assimilierten Daten wurde erneut durch Betrachtung der Scherkräfte an
den Gefäßwänden, sowie der Strömungsgeschwindigkeit durchgeführt.

Dies zeigt, dass Datenassimilation auf verschiedenen Ebenen stattfinden
kann. Die Grundlage ist dabei stets eine numerische Strömungssimulation so-
wie der Vergleich von simulierten, gemessenen und assimilierten Daten.
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Zu Beginn dieses Kapitels sei erneut das Ziel dieser Arbeit aufgegriffen. Es
sollen Strömungssimulationen so konfiguriert und parametrisiert werden, dass
diese möglichst gut die gemessenen Daten widerspiegeln, um letztlich Da-
tenassimilation betreiben zu können. Kernbestandteil dieser Aufgabe ist al-
so das Quantifizieren der Ähnlichkeit zwischen gemessenen und simulierten
Datensätzen, worauf im Folgenden detailliert eingegangen wird.

4.1 Quantifizierung von Ähnlichkeit

Um ein Maß für Ähnlichkeit definieren zu können, muss zunächst gewährleistet
sein, dass die Domäne vergleichbar ist. Die gemessenen Daten dienen hier-
bei als Referenz, da diese für die Segmentierung der enthaltenen Gefäße bzw.
Phantome verwendet werden. Wie in Unterabschnitt 2.1 bereits erläutert, wer-
den bei Messungen mittels 4D-Phasenkontrast-MR anatomische Bilder erstellt
und für die Segmentierung verwendet. Letztere definiert damit die Domäne,
in welcher die Datensätze miteinander verglichen werden können. Bei den Si-
mulationen ist dies offensichtlich, da diese auf der durch die Segmentierung
erhaltenen Geometrie initialisiert und durchgeführt wird. Ferner existieren in
vielen Fällen noch mehr Datensätze desselben Phantoms, also im Falle dieser
Arbeit mehrere Messungen mit unterschiedlichen Einstellung der Pumpe bei
sonst unveränderten Bedingungen.

Um Ähnlichkeiten verschiedener Datensätze bestimmen zu können, wird ei-
ne Ähnlichkeitsdarstellung1 verwendet. Dabei handelt es sich um eine aggre-
gierte Projektion bzw. Einbettung des gesamten Ensembles aus gemessenen
und simulierten Daten in eine einzelne Visualisierung. Die Projektion wird
mittels klassischer multidimensionaler Skalierung (MDS) durchgeführt, wie in
Abschnitt 2.3 erklärt. Für die Projektion muss jedoch zunächst eine Distanz-
bzw., in diesem Kontext auch Ähnlichkeitsmatrix genannt, definiert werden.
Diese beinhaltet die paarweisen Ähnlichkeiten jedes Zeitschrittes zu jedem an-
deren, bzw. zu sich selbst. Ein Zeitschritt ist hierbei zu verstehen als das Vek-
torfeld ~u (vgl. Gleichung 2.1) der Geschwindigkeiten zu einem simulierten bzw.
gemessenen Zeitpunkt. Effektiv ist das Ziel also, eine Metrik zur Quantifizie-
rung der Ähnlichkeit von Vektorfeldern zu entwickeln. Ein solches Vektorfeld
hat zwei offensichtliche Größen, denen man Beachtung schenken kann, nament-
lich die Magnitude und die Richtung. Wird zunächst nur die Magnitude |~u|
1Ähnlichkeitsdarstellung: von engl. Similarity Plot
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betrachtet, liegt ein dreidimensionales Skalarfeld vor, für welches Fofonov et
al. [5] bereits eine effektive Metrik zur Bestimmung der Ähnlichkeit entwi-
ckelt haben. Diese basiert auf einer Verallgemeinerung des Vergleichs von zwei
Isokonturen, welche je ein Skalarfeld beschreiben. Die Anwendbarkeit dieser
Methode wurde bereits gut untersucht und bestätigt [4]. Es werden jedoch
selten alle verfügbaren Datenpunkte, im vorliegenden Falle also jeder Voxel
des Datensatzes, in die Berechnung miteinbezogen. Grund dafür ist die mit
der Anzahl der Datenpunkte steigende Dauer und der benötigte Speicherplatz.
Vielmehr wird ein quasi-Monte Carlo-Ansatz (qMC) gewählt, bei dem N quasi-
zufällige Datenpunkte innerhalb der gemeinsamen, durch die Segmentierung
definierte Domäne gewählt werden. Die Anzahl der Datenpunkte lässt sich so
auf etwa N = 16384 oder gar auf die Hälfte reduzieren, ohne, dass wichtige Ei-
genschaften verloren gehen. Dies konnte durch die Konvergenz der Unterschie-
de der Distanzmatrizen bei linearer Erhöhung der Anzahl der Datenpunkte
auf Daten überprüft werden, die den vorliegenden ähnlich sind [4]. Vielmehr
wäre deduktiv bereits eine geringere Anzahl ausreichend, da die Domäne der
Strömungsdaten sich nicht auf das kubische, das Phantom umschließende Vo-
lumen, sondern nur auf das enthaltene Phantom bezieht. Dessen Volumen ist
jedoch nicht ohne Weiteres bekannt, sodass die Anzahl der Datenpunkte be-
rechnet wird, als würden die umschließenden Volumen miteinander verglichen
werden. Dies erlaubt die einmalige Wahl eines Wertes für alle Phantome, da
diese eine ähnliche Auflösung aufweisen und es kann auf einen erneuten Nach-
weis der Konvergenz verzichtet werden.

Seien ~pi mit i = 1, . . . , N nun die durch den qMC-Ansatz bestimmten Da-
tenpunkte und h ein Isowert innerhalb des Wertebereichs der Magnituden aller
Felder, also h ∈ [umin, umax]. Dann wird jeder Datenpunkt nun gegen den Iso-
wert getestet und dadurch eine Isokontur C bestimmt mit C = [ci] und

ci =

{
1 wenn h < |~u(~pi)|
0 sonst.

(4.1)

Es gilt nun, die Isokonturen miteinander zu vergleichen. Der Jaccard-Index ist
ein effektives Maß zur Berechnung der Ähnlichkeit d zweier Mengen A und B
und kann über

dAB = 1− |A ∩B|
|A ∪B|

(4.2)

als Metrik verwendet werden. Diese basiert auf dem Verhältnis von den in
beiden zu den in mindestens einer der beiden Mengen enthaltenen Elemente.
Seien CA und CB nun die Isokonturen zweier Zeitschritte A und B, dann kann
Gleichung 4.2 unter Beachtung der Reihenfolge der Elemente auch geschrieben
werden als

dAB = 1−
∑N

i=1 min(cAi , c
B
i )∑N

i=1 max(cAi , c
B
i )
, (4.3)

da die ci nur entweder den Wert 0 oder 1 haben können. Diese Gleichung kann
jedoch als eine Verallgemeinerung der Jaccard-Metrik verstanden werden, die
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(a) CA und CB wurden für beide Abbildungen jeweils ran-
domisiert mit einer Uniformverteilung auf dem Intervall [0, 1]
initialisiert.

(b) CA und CB wurden mit
einer linearen Funktion, bzw.
mit einer Sinus-Periode im
Intervall [0, 1] initialisiert.

Abbildung 4.1: Darstellung der Unähnlichkeit zweier Konturen CA und CB, er-
mittelt mit der generalisierten Jaccard-Metrik (rot) sowie der Ver-
allgemeinerung von Fofonov et al. [5] (blau). Für eine große Anzahl
N der Datenpunkte konvergieren beide auf denselben Wert.

sich nicht mehr nur auf Isokonturen anwenden lässt. Normalisiert man zunächst
alle Werte der Skalarfelder mit

ĉi =
|~u(~pi)| − umin
umax − umin

, (4.4)

anstatt einen Isowert zu bestimmen und einen Vergleich der Isokonturen durch-
zuführen, lässt sich die verallgemeinerte Metrik nun direkt auf die Werte der
Datenpunkte ĉi über Ĉi = [ĉi] anwenden. Fofonov et al. haben die Metrik 4.2
jedoch mit einer Argumentation über unendlich viele Isokonturen verallgemei-
nert zu

dAB = 1−
∑N

i=1 1−max(ĉAi , ĉ
B
i )∑N

i=1 1−min(ĉAi , ĉ
B
i )
. (4.5)

Metrik 4.3 und 4.5 sind offensichtlich nicht äquivalent, konvergieren jedoch für
große N , wie sie auf den vorliegenden Daten verwendet werden. Dies wurde
durch die Visualisieren der beiden Metriken für synthetische Daten untersucht,
wie in Abbildung 4.1 zu sehen. Um keine quantitative Untersuchung anschlie-
ßen zu müssen, wird im Folgenden die durch Fofonov et al. definierte Metrik
verwendet, welche eine Verbesserung zur Jaccard-Metrik, angewendet auf Iso-
konturen, darstellt [5]. Hierbei ist insbesondere für folgende Bestimmungen der
Ähnlichkeiten relevant, dass die Einträge der DistanzmatrixD = [dij] stets nor-
miert sind, also dij ∈ [0, 1]. Die Jaccard-Metrik und ihre Verallgemeinerungen
garantieren diese Normierung aufgrund der berechneten Quotienten unmittel-
bar. Das Subtrahieren von 1 transformiert dabei jeweils die Ähnlichkeit der
beiden zu deren Unähnlichkeit. Letztere wird für die gewünschte Anwendung
der MDS gefordert.

Die verallgemeinerte Metrik 4.5 wurde von den Autoren auf Daten astrophy-
sikalischer Simulationen gegen andere bekannte Metriken verglichen. Nament-
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lich sind dies die zuvor genannte Ähnlichkeit der Isokonturen, die gemittelt
normalisierte Differenz der Gradienten an den Datenpunkten über

dgrad(A,B) =

∑N
i=1 ‖∇ĉAi −∇ĉBi ‖

2N
, (4.6)

sowie gegen die Unähnlichkeiten basierend auf dem Korrelationskoeffizienten
der beiden durch Gleichung 4.4 normalisierten Mengen zweier Konturen durch

dcorr(A,B) =
1

2

1−
∑N

i=1(ĉAi − ¯̂cA)(ĉBi − ¯̂cB)√∑N
i=1(ĉAi − ¯̂cA)2(ĉBi − ¯̂cB)2

 . (4.7)

Dabei konnte gezeigt werden, dass bestimmte Muster, wie beispielsweise Ro-
tationen, durch die zuletzt genannten Metriken besser erfasst werden können.
Jedoch waren die Projektionen mehr von Verdeckung und Unordnung betrof-
fen und Ausreißen konnten nicht gut ausgemacht werden. Da das Ziel dieser
Arbeit ist, den gemessenen Daten sehr ähnliche Simulationen zu generieren
und somit Ausreißer auszuschließen, wird der Fokus auf die durch Fofonov et
al. vorgestellte Metrik gelegt.

Soll nun jedoch die Ähnlichkeit der Richtungen der Vektorfelder betrach-
tet werden, kann diese Metrik nicht mehr ohne Weiteres angewendet wer-
den. Letztlich soll jedoch erneut eine Metrik gefunden werden, welche die
Unähnlichkeiten der Richtungen d∠(A,B) auf das Intervall [0, 1] abbildet. Ein
trivialer Ansatz ist hierbei, für jeden Datenpunkt den Winkel zwischen beiden
Richtungsvektoren ~uA und ~uB der paarweise betrachteten Felder A und B als
Maß für die Unähnlichkeit zu verwenden. Dann lässt sich die Metrik für einen
einzelnen Datenpunkt bereits wie folgt beschreiben:

ϕAB(~p) =


1
π

arccos
(

~uA(~p)·~uB(~p)
|~uA(~p)|·|~uB(~p)|

)
wenn |~uA(~p)| 6= 0 ∧ |~uB(~p)| 6= 0

0 wenn |~uA(~p)| = 0 ∧ |~uB(~p)| = 0

1 sonst.

(4.8)

Es wird folglich der auf das Intervall [0, 1] normalisierte Winkel zwischen beiden
Richtungsvektoren verwendet, wenn diese vom Nullvektor verschieden sind.
Liegt beide Male der Nullvektor vor, so sind sich beide maximal ähnlich und
die Metrik wertet zu 0 aus. Im Falle dessen, dass es sich genau bei einem
der beiden um den Nullvektor handelt, so wertet die Metrik zur maximalen
Unähnlichkeit, also 1 aus. Diese Entscheidung wurde getroffen, da die Metrik
dem Erkennen von Ausreißern dienen soll. Bei einem Nullvektor innerhalb der
Simulationsdomäne handelt es sich um eine absolute Seltenheit, mehr noch
in den gemessenen Daten aufgrund des enthaltenen Rauschens. Um nun die
Auswertungen für alle Datenpunkte in einer Metrik zu vereinen, wird letztlich
mit

d∠(A,B) =

∑N
i=1 ϕAB(~pi)

N
(4.9)
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der Durchschnitt der einzelnen Winkelunähnlichkeiten gebildet. Schlussendlich
können nun alle paarweisen Ähnlichkeiten aller Felder verwendet werden, um
für jede Metrik eine Distanzmatrix D zu bestimmen, wie in Abschnitt 2.3
beschrieben.

Nun liegen die Unähnlichkeiten der Magnitude dAB und der Richtungen
d∠(A,B) in Form von separaten Distanzmatrizen vor. Diese Informationen sol-
len nun vereint werden, um letztlich eine einzelne Projektion generieren zu
können. Der Umstand, dass die beiden Metriken auf dem Intervall [0, 1] defi-
niert sind kann genutzt werden, um die Distanzmatrizen zu kombinieren. Eine
Menge D = {D′, D′′, . . . } von Distanzmatrizen kann vereint werden, indem für
jeden Eintrag dij der resultierenden Matrix D eine Funktion f auf die Einträge
derselben Position alle Matrizen angewendet wird mit dij = f(d′ij, d

′′
ij, . . . ).

Dies setzt natürlich dieselbe Größe der Matrizen voraus, welche unmittelbar
gegeben ist, wenn alle Matrizen für dasselbe Ensemble generiert wurden. Die
Funktion f sollte dabei der Definition

f(x1, . . . , xn) =


1 wenn ∃i : xi = 1

0 wenn ∀i : xi = 0

0 ≤ γ ≤ 1 sonst

(4.10)

genügen, damit die Interpretation der erzeugten Distanzmatrix sich nicht ändert.
Bei γ handelt es sich dabei um eine monoton steigende Funktion auf dem In-
tervall [0, 1], damit hohe Werte stets mit niedriger Ähnlichkeit, bzw. niedrige
Werte mit hoher Ähnlichkeit assoziiert bleiben. Eine mögliche Funktion ist

f(x1, . . . , xn) = max(x1, . . . , xn). (4.11)

Hierbei wird jeweils nur der Eintrag an entsprechender Stelle aller Distanzma-
trizen verwendet, der die größte Unähnlichkeit repräsentiert. Deren Anwen-
dung ist sinnvoll, wenn letztlich nur Simulationen gesucht werden, die in allen
Feldern ähnlich sind. Der Nachteil dieser Funktion ist jedoch, dass viele In-
formationen verloren gehen. Es ist insbesondere nicht klar, ob nur ein Feld
für die Unähnlichkeit verantwortlich ist, oder mehrere. Um Magnituden- und
Winkelunähnlichkeiten zu kombinieren, kann daher die Funktion

f(x1, . . . , xn) = 1−
n∏
i=1

(1− xi) (4.12)

verwendet werden. Dabei wird jedes Feld gleichermaßen in die neue Distanz-
matrix miteinbezogen.

Eine weitere Möglichkeit, die Magnitude und den Winkel in eine Distanz-
matrix zu überführen, ist durch die Verwendung einer Metrik gegeben, die
beide Größen unmittelbar miteinbezieht, ohne den Umweg über zwei Distanz-
matrizen zu nehmen. Li und Shen haben zum Vergleich von Vektorfeldern eine
gewichtete Metrik entwickelt [20], die von Jiang et al. [14] adaptiert wurde zu

S(~u1, ~u2) = αe
−2 arcsin(

~u1·~u2
|~u1|·|~u2|

)
+ βe−

|~u1|−|~u2|
umax (4.13)
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Größe Vektor Farbe
Magnitude (θ, θ)
Richtung (cos(2πθ), sin(2πθ))

Kombination (θ · cos(2πθ), θ · sin(2πθ))
Referenz 1 (1, 0)
Referenz 2 (−1, 0)

Tabelle 4.1: Beschreibung eines Ensembles synthetischer Datensätze unter Anga-
be der veränderten Größe, des repräsentativen Vektors und einer ein-
deutigen Farbe. Der Faktor θ verläuft dabei linear im Intervall (0, 1],
welches in 40 Einheiten diskretisiert wurde.

mit α, β ≥ 0 und α + β = 1. Diese ist für Paare von Vektoren ~u1, ~u2 definiert
und wurde bereits von zuletzt genannten Autoren für den Vergleich zwischen
Simulationen und mittels 4D-Phasenkontrast-MR gemessenen Daten verwen-
det. Dabei wurde α = β = 0.5 gewählt. Erneut werden letztlich die Werte aller
Paare von Vektoren mit

dS(A,B) =

∑N
i=1 S(~uA(~pi), ~u

B(~pi))

N
(4.14)

gemittelt. Eine Verallgemeinerung dieser Metrik für eine beliebige Anzahl von
Feldern, wie im Falle der mit Gleichung 4.10 vorgestellte Methode, ist jedoch
nicht Möglich.

Die so erhaltenen Distanzmatrizen können mittels MDS (vgl. Abschnitt 2.3)
auf wahlweise bis zu drei Dimensionen reduziert und projiziert werden. Da-
bei wird für jeden Zeitschritt entsprechend seiner Unähnlichkeiten zu allen
übrigen eine Position im niederdimensionalen Raum derart ermittelt, dass de-
ren euklidischen Abstände die Unähnlichkeiten widerspiegeln. Die Achsen des
projizierten Raumes sind die Hauptrichtungen bzw. Eigenvektoren, denen je-
weils ein Eigenwert zugeordnet ist. Nur solche mit großen Eigenwerten tragen
dabei signifikant zur Projektion bei. Das Visualisieren der drei oder weniger
Dimensionen mit den größten Eigenwerten ist dabei intuitiv. Projizierte Zeit-
schritte eines Simulationslaufes oder einer Messung können dabei in zeitlicher
Reihenfolge zu einer Kurve verbunden und farblich kodiert werden. Eine voll
gesättigte Farbe repräsentiert dabei eindeutig eine Zeitreihe. Da bei der gleich-
zeitigen Visualisierung der ersten zwei oder drei Hauptkomponenten die Zeit
nicht als Dimension dargestellt wird, kann diese Information durch lineare In-
terpolation mit der Farbe weiß erneut hinzugefügt werden. Die so erzeugten
Visualisierungen werden Ähnlichkeitsdarstellung genannt.

Um die Methoden zu evaluieren, wurde ein Ensemble synthetischer Da-
tensätze generiert, welches in Tabelle 4.1 beschrieben wird. Dabei handelt
es sich um homogene Vektorfelder der Dimension 2 × 2 × 2. Die Größe ist
arbiträr, da letztlich jeder Zeitschritt durch einen einzigen Vektor beschrie-
ben wird. Das Ensemble enthält Datensätze, bei deren Vektoren ausschließlich
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(a) Verwendung von Metrik 4.5 zur ausschließlichen Berücksichtigung der Magnitude.
Als Achsen werden die erste Hauptkomponente und die Zeit verwendet.

(b) Verwendung von Metrik 4.9 zur ausschließlichen Berücksichtigung der Richtung.
Als Achsen werden die ersten beiden Hauptkomponenten verwendet.

Abbildung 4.2: Ähnlichkeitsdarstellungen der Metriken, welche jeweils entweder
nur die Magnitude oder Richtung berücksichtigen. Zusätzlich sind
die Eigenwerte der ersten zehn Hauptkomponenten dargestellt,
was die jeweilige Wahl der Dimensionen begründet.
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(a) Verwendung von Metrik 4.11 zur Kombination der Magnituden- und Richtungs-
informationen. Als Achsen werden die ersten drei Hauptkomponenten verwendet.

(b) Verwendung von Metrik 4.12 zur Kombination der Magnituden- und Richtungs-
informationen. Als Achsen werden die ersten drei Hauptkomponenten verwendet.

(c) Verwendung von Metrik 4.14 mit α = β = 0.5 zur Kombination der Magnituden-
und Richtungsinformationen. Als Achsen werden die ersten drei Hauptkomponenten
verwendet.

Abbildung 4.3: Ähnlichkeitsdarstellungen der Metriken, welche sowohl die Magni-
tude, als auch die Richtung berücksichtigen. Zusätzlich sind die
Eigenwerte der ersten zehn Hauptkomponenten dargestellt, was
die jeweilige Wahl der Dimensionen begründet.
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die Magnitude bzw. die Richtung manipuliert wird, sowie eine Kombination
daraus. Zusätzlich sind zwei konstante Referenzdatensätze enthalten, welche
die Evaluation erleichtern sollen. Zunächst werden die Metriken 4.5 und 4.9
zur separaten Betrachtung von Magnitude und Richtung ausgewertet. Abbil-
dung 4.2(a) zeigt eine konstante Kurve für den Datensatz mit sich verändernder
Richtung, welche wie zu erwarten die von Referenz 1 und 2 überdeckt, da die
Magnituden jeweils identisch sind. Ändert sich nur die Magnitude, so erfährt
auch die entsprechende Kurve eine starke Änderung. Werden die Änderungen
der Magnitude und der Richtung kombiniert, so verhält sich die resultieren-
de Kurve ähnlich, da der Winkel keinen Einfluss hat. Der Verlauf ist jedoch
nicht identisch, da sich die Magnituden um den Faktor

√
2 unterscheiden.

Dennoch erreicht die Kombination am Ende noch die konstante Kurve, da
diese zum Endzeitpunkt dieselbe Magnitude aufweisen. Die Kurve des Daten-
satzes mit sich ändernder Magnitude entfernt sich dagegen erneut aus dem
bereits genannten Grund der unterschiedlichen Magnitude. Die Position zum
Endzeitpunkt ist dagegen nicht dieselbe wie zum Zeitpunkt θ = 25, da die
zweite Hauptkomponente ebenfalls einen nicht zu vernachlässigenden Einfluss
besitzt. Letzteres ist anhand der dazugehörigen Eigenwerte nachzuvollziehen.
In Abbildung 4.2(b) sind die kreisförmigen Kurven der beiden Datensätze mit
sich ändernder Richtung identisch, was der Erwartung entspricht. Die Magni-
tude wird durch den weißen Punkt repräsentiert und ist konstant. Die Re-
ferenzpunkte liegen sich gegenüber, was ebenfalls der Erwartung entspricht.
Die Kombinationen der Magnituden- und Richtungsinformationen über Me-
trik 4.11 und 4.12 zeigen ähnliche Ergebnisse für den synthetischen Datensatz
in Abbildung 4.3(a) bzw. 4.3(b). Es finden sich dieselben markanten Muster
aus vorherigen Abbildungen in Kombination wieder, d. h. eine kreisförmige
Kurve in einer Ebene für die sich ändernde Richtung und eine beinahe lineare
Bewegung durch die Änderung der Magnitude. Eine weitere Kurve stellt gut
erkennbar den Verlauf der Kombination beider Größen dar: sie beginnt und
endet in etwa am Start-, bzw. Endpunkt des Datensatzes der sich ändernden
Magnituden bzw. Richtung. Die Referenzpunkte sind analog zur kreisförmigen
Kurve zu Interpretieren. Die Metrik von Jiang et al. wurde wie von den Autoren
vorgeschlagen mit α = β = 0.5 ausgewertet und liefert ein weniger interpre-
tierbares Ergebnis. Zunächst legen die Eigenwerte nahe, dass die Verwendung
der ersten drei Hauptkomponenten möglicherweise nicht ausreichend ist. In
Abbildung 4.3(c) sind die beiden Kurven der Datensätze mit sich ändernder
Richtung zu sehen, welche einen sehr ähnlichen Verlauf haben. Der Datensatz
der sich ändernden Magnitude wird durch den oberen weißen Punkt darge-
stellt, bzw. approximiert, da die entsprechenden Änderungen in Relation zu
den übrigen verschwindend gering sind. Dies kann durch das Ändern der Ge-
wichtung kompensiert werden, was durch die Verwendung von α = 0.1 und
β = 0.9 überprüft wurde. Damit verliert die Metrik für den Zweck dieser Ar-
beit jedoch ihre Allgemeingültigkeit, da die Gewichtung für jeden Datensatz
unterschiedlich ausfallen kann.
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4.2 Die Analyseprozedur

Essentiell für die Datenassimilation ist das Akquirieren von Daten mittels Si-
mulationen. Im Rahmen dieser Arbeit werden Ensembles von Simulationsläufen
generiert, da die Auswirkung der Simulationsparameter in Hinblick auf die
Ähnlichkeit zu den gemessenen Daten nicht offensichtlich ist. Für das Generie-
ren von Ensembles und deren Analyse wird im Folgenden eine Analyseprozedur
vorgestellt, die alle notwendigen Schritte in sinnvoller Reihenfolge kombiniert.
Dafür wurde das in Abschnitt 2.4 vorgestellte Framework Voreen erweitert und
daraus eine Anwendung erstellt. Mit deren Hilfe sind Domainexperten in der
Lage, ihre mittels 4D-Phasenkontrast-MR gemessenen Daten zu importieren
und Simulationen zu konfigurieren. Die Anwendung wurde auf die der Ar-
beit zugrundeliegenden Daten der Arbeitsgruppe Magnetresonanz am Institut
für Medizinische Mikrobiologie der Universität Jena zugeschnitten und durch
Feedback von Verena Hoerr und Ali Nahardani angepasst.

4.2.1 Vorverarbeitung

Die bereits erwähnten, der Arbeit zugrundeliegenden Daten wurden in unter-
schiedlichen Formaten zur Verfügung gestellt. Zunächst kam ein zuvor entwi-
ckeltes Format eines ehemaligen Mitarbeiters der Arbeitsgruppe, Philipp Rene
Bovenkamp, zum Einsatz. Bei diesem wurden notwendige Metadaten, nament-
liche Auflösung, Spacing und die Anzahl der Zeitschritte (vgl. Abschnitt 2.1),
in einer separaten Textdatei gespeichert. Es sei erwähnt, dass für diese Ar-
beit ausschließlich Datensätze mit statischen Strömungen verwendet wurden,
sodass stets ein einzelner Zeitschritt je Messung zur Verfügung steht. Die ana-
tomischen Daten, bzw. Rekonstruktionen der Phasenbilder für jede Dimensi-
on (vgl. Abschnitt 2.1) wurden in dem Format jeweils Scheibenweise in ei-
ne ASCII-Textdatei geschrieben. Das Lesen dieser Dateien ist sehr langsam,
weshalb ein Vorverarbeitungsschritt eingeführt wurde, bei dem die Daten in
das Voreen-eigene, XML-basierte Volumenformat konvertiert wurden. Darin
sind die Rohdaten kompakt in Binärform gespeichert und es können weite-
re Metadaten hinzugefügt werden. Bei der Konvertierung wurde so für jeden
Zeitschritt je ein Datensatz für Magnitude (aus dem anatomischen Daten) und
Geschwindigkeit erzeugt. Dieser enthält neben der Auflösung und dem Spacing
zusätzlich noch den Namen des Feldes, also Magnitude oder Geschwindigkeit,
sowie einen Namen zur Identifikation der Messung. Daten aktuellerer Messun-
gen wurden im Nifti-Format zur Verfügung gestellt. Diese enthalten jedoch
ausschließlich die Rekonstruktionen der Phasenbilder. Hier wurde jeweils ein
weiteres Volumen berechnet, welches die entsprechenden Magnituden beinhal-
tet, um dem Aufbau zuvor genannten Daten zu gleichen. Da es sich um große
Ensembles mit vielen Simulationsläufen und Zeitschritten handeln kann, auf
denen Algorithmen ausgeführt werden, spielt die Speicherverwaltung eine be-
sondere Rolle für die Interaktivität der Anwendung. Bei einem Ensemble von
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30 Simulationsläufen mit jeweils 20 Zeitschritten der Größe von 64MB, was
einer Auflösung von 2563 Voxeln entspricht, sind somit bereits mehr als 38GB
zu bewältigen. Das Speichermanagement von Voreen implementiert zu diesen
Zweck einen dynamischen Lademechanismus für das verwendete Format. Da-
bei werden Volumendaten erst dann aus dem meist langsamen Massenspeicher
in den schnellen Haupt-, bzw. Grafikspeicher geladen, wenn diese benötigt
werden. Wird die Kapazität des Hauptspeichers durch das sukzessive Einla-
den mehrere Volumen überschritten, so werden bereits eingeladene nach dem
LRU -Prinzip2 wieder aus dem Hauptspeicher verdrängt.

(a) Visualisierung des anatomischen Bildes
vor der Segmentierung. Die Strömung im
Aneurysma ist nicht klar zu erkennen und
der Übergang vom Schlauch der Pumpe
zum Phantom sollte nicht Teil der Simu-
lation sein.

(b) Visualisierung des mit einer ROI
(orange) zugeschnittenen Volumens. Der
Übergang vom Schlauch der Pumpe zum
Phantom wurde entfernt.

(c) Visualisierung nach Anwendung ei-
nes Medianfilters, Binarisierung und eines
Gaußfilters.

(d) Visualisierung der extrahierten Isofläche
mit Einlass (grün), Auslass (rot), Mittellinie
(blau) und Gefäßgraphen (schwarz).

Abbildung 4.4: Die Segmentierung für einen bereits maskierten Datensatz erfolgt
in vier Schritten am Beispiel eines Aneurysmen-Datensatzes.

2LRU: Least Recently Used - am längsten nicht verwendet
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4.2.2 Segmentierung

Die Segmentierung der Phantome bzw. deren Inneren dient als Simulations-
domäne, sodass ihr Ergebnis den Ausgang der Simulation mitbestimmt. In den
älteren Datensätzen wurden die entsprechenden Regionen bereits maskiert, so-
dass eine Segmentierung beinahe unmittelbar vorliegt. Dennoch enthalten die-
se durch die Messtechnik bedingte, unsaubere Oberflächen, da die Maskierung
nicht optimal ist (siehe Abbildung 4.4(a). Die aktuelleren Datensätze enthal-
ten große, uninteressante Regionen und starkes Rauschen. Die Anwendung
erlaubt daher zunächst das interaktive Auswählen einer quaderförmigen Regi-
on (ROI3), womit bereits ein gewisser Teil des unerwünschten Inhalts entfernt
werden kann (siehe Abbildung 4.4(b)). Anschließend wird eine Kombination
von Filtern auf die Region angewendet, deren Ziel das Erzeugen einer Maske
für das enthaltende Phantom ist. Dafür kommt ein 3x3-Medianfilter und eine
Binarisierung zum Einsatz, wodurch das Rauschen bereits entfernen werden
kann. Der Schwellenwert muss dabei abhängig von der Stärke des Rauschens
gewählt werden und unterscheidet sich insbesondere für die alten und neuen
Daten. Ferner wird ein dreidimensionaler Gauß-Filter angewendet, sodass eine
gewisse Glättung erreicht wird, ohne zu viele Details zu verlieren. Die Anwen-
dung der Filter wurde durch eine qualitative Einschätzung des Ergebnisses
(siehe Abbildung 4.4(c)) festgelegt. Dabei wurde die Verwendung möglichst
weniger Filter angestrebt, um deren jeweiligen Effekt auf das Ergebnis gut
einschätzen zu können. Im nächsten Schritt kann mit dem Marching Cubes-
Algorithmus eine Isofläche der erhaltenen Maske berechnet werden, welche
als Menge von Dreiecken vorliegt. Durch das Binarisieren und Glätten sollte
der Isowert im Intervall (0, 1] so gewählt werden, dass das Volumen möglichst
groß ausfällt, jedoch keine unerwünschten Verbindungen entstehen (siehe Ab-
bildung 4.4(d)). Sollte die so erhaltene Isofläche dennoch nicht optimal sein,
können weitere Filter verwendet oder die vorhandenen angepasst werden. Pha-
senumkehrungen (vgl. Abschnitt 2.1) können beispielsweise vereinzelt in Be-
reichen hoher Magnituden sehr niedrige zur Folge haben. Je nach Größe des
betroffenen Bereiches müsste ein entsprechender Algorithmus angewendet wer-
den, um die tatsächlichen Magnituden wiederherzustellen, was in dieser Arbeit
nicht behandelt wird. Ist dies jedoch nur vereinzelt der Fall, kann es ausreichen,
eine größere Nachbarschaft für den Medianfilter zu verwenden. Da dies jedoch
unerwünschte Nebeneffekte an anderer Stelle zur Folge haben kann, können
auch morphologische Operationen, also Dilatation und anschließende Erosion
auf das bereits binarisierte Ergebnis angewendet werden. Sollten in der Region
hingegen freistehende, durch Rauschen verursachte Artefakte vorhanden sein,
können diese mit den in umgekehrter Reihenfolge angewendeten morphologi-
schen Operationen entfernt werden. Die Isoflächen werden von dem verwende-
ten Simulationsframework OpenLB benötigt, um für das in der LBM genutz-
te Gitter zu initialisieren. Dabei wird entsprechend der gewählten Auflösung

3ROI: Region Of Interest - eine Region von Interesse
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Fluid Viskosität [×10−3m2 s−1] Dichte [kg m−3]
Wasser (ca. 30 ◦C -10 ◦C) 0.8− 1.35 995.6− 1000

Blut (variable Bedingungen) 3− 4 1043− 1057

Tabelle 4.2: Literaturwerte der Viskosität und Dichte von Wasser und Blut.

für jeden Gitterpunkt getestet, ob dieser zur Simulationsdomäne gehört. Die
Isofläche wird also als Simulationsgeometrie verwendet. Der verwendete Al-
gorithmus schießt dafür einen Strahl in jede der drei Raumrichtungen und
zählt die Anzahl der Schnittpunkte mit der Geometrie. Ist diese ungerade, so
wird der Gitterpunkt zur Simulationsdomäne gezählt. Der Algorithmus besitzt
zwar eine gewisse Robustheit gegenüber Löchern in der Geometrie, es werden
jedoch unter Umständen auch inkorrekte Ergebnisse erzeugt. Zunächst wird
daher die Möglichkeit geboten, das Resultat des Tests zu visualisieren. Sind
Probleme offensichtlich, so können anschließend Löcher in der Geometrie auto-
matisiert geschlossen werden. Dafür wird jede zusammenhängende Menge von
Seiten der durch den Marching Cube-Algorithmus erzeugten Dreiecke iteriert,
welche diese Seiten mit keinem anderen Dreieck teilen. Für jedes so definierte
Loch in der Geometrie wird ein neuer Punkt eingefügt. Für alle beteiligten
Seiten wird ein neues Dreieck ergänzt, dessen dritter Punkt durch den Schwer-
punkt aller Endpunkte definiert wird. Implementiert wurde dies mithilfe der
Half-Edge-Datenstruktur, welche die benötigten Informationen der Konnek-
tivität zwischen den Dreiecken bereitstellt. Es sei jedoch erwähnt, dass das
Überführen in die Datenstruktur bei komplexen Geometrien ein sehr rechen-
intensiver Schritt ist. Für die vorliegenden Daten hat das Schließen der Löcher
keinen Vorteil bedeutet, jedoch sei hiermit auf die Möglichkeit dieser Optimie-
rung verwiesen.

Die Segmentierung wurde für eine einzelne Geometrie beschrieben, jedoch
liegen zu den Phantomen mehrere Messungen, bzw. zukünftig mehrere Zeit-
schritte für jede Messung vor. Für die in dieser Arbeit verwendeten Daten
unterscheiden sich die Phantome je Messung jedoch nicht oder kaum, da diese
aus einem (relativ) statischen Material angefertigt wurden (vgl. Kapitel 5). Aus
diesem Grund wurde für die Segmentierung eine beliebige Messung gewählt
und im Folgenden als Referenz verwendet. Die übrigen Messungen kommen in
einem späteren Schritt ebenfalls zum Einsatz.

4.2.3 Simulation

Nachdem die Simulationsgeometrie wie im vorangegangene Unterabschnitt aus
der Segmentierung eines Referenzdatensatzes generiert wurde, wird nun die
Simulation selbst bzw. das Erstellen eines Ensembles thematisiert. Da letz-
terem unterschiedlicher Parametrisierungen zugrunde liegen (vgl. Unterab-
schnitt 2.2.4), spielt die Wahl der Parameter eine gesonderte Rolle. Die Geo-
metrie wird dabei zur Initialisierung des Simulationsgitters verwendet, wo-
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durch die Simulationsdomäne initialisiert wird. Jeder Voxel des Gitters wird
dabei letztlich durch ein Material bzw., allgemeiner, durch einen Typen re-
präsentiert. So werden alle innerhalb der Geometrie liegenden Voxel zunächst
als ein Fluid initialisiert, die unmittelbar außerhalb liegenden als Wand. Die
Eigenschaften des Fluides sind dabei Teil der Parametrisierung und durch de-
ren Viskosität η und Dichte ρ definiert. Gültige Werte sind dabei für die ver-
wendeten Flüssigkeiten der Literatur zu entnehmen, zu sehen in Tabelle 4.2.
In der implementierten Anwendung werden dabei Intervalle für Wasser und
Blut zur Auswahl gestellt. Die Messungen zur Akquirierung der in dieser Ar-
beit verwendeten Datensätze wurden dabei zwar ausschließlich mit Wasser
durchgeführt, allerdings soll die Implementation in Zukunft auch für die nicht
verwendeten, aber bereits vorliegenden Messungen von Mäusen genutzt wer-
den können. Um innerhalb der Geometrie eine Strömung zu simulieren, müssen
Ein- und Auslässe definiert werden, welche zudem deren Richtung festlegen. Zu
diesem Zweck wird die bei der Segmentierung erhaltene Maske wiederverwen-
det. Mithilfe des von Drees et al. [3] implementierten Algorithmus wird zu der
Geometrie in einem effizienten, iterativen Prozess ein Gefäßgraph und die Mit-
tellinie ermittelt (siehe Abbildung 4.4(d)). Die Endknoten des Gefäßgraphen,
also jene Knoten mit Grad 1, stellen Kandidaten für Ein- und Auslässe dar.
Prinzipiell lässt sich eine Simulation in beide Richtungen durchführen. Da die
simulierten Daten den gemessenen jedoch ähneln sollen, sollte die Richtung
also identisch gewählt sein. Zu diesem Zweck wurde eine Heuristik implemen-
tiert, die automatisiert zu den Endknoten die Richtung ermittelt. Dafür wird
in dem gemessenen Referenzdatensatz an der Position der jeweiligen Knoten
die normalisierte Richtung ~d der lokalen Strömung ausgelesen und mit dem
Normalenvektor ~n vom Knoten entlang der Mittellinie verglichen. Unter Ver-
wendung eines Schwellenwertes h ∈ [0, π

2
] kann durch

Typ =


Einlass wenn arccos(~d · ~n) < h

Auslass wenn arccos(~d · ~n) ≥ π − h
unbekannt sonst

(4.15)

der Typ des Knotens ermittelt werden. Weisen die gemessenen Daten im Be-
reich der Kandidaten turbulente Strömungen auf, kann die simple Heuristik
den Typen nicht klassifizieren und der Nutzer muss mithilfe der Benutzero-
berfläche eine manuelle Auswahl treffen. Dafür ist die Kenntnis des Daten-
satzes erforderlich oder es wird zuvor auf eine Visualisierung des gemessenen
Vektorfeldes zurückgegriffen. Zur Auswahl stehen zur Zeit Strömungslinien,
deren lokale Richtung farblich kodiert wurde, sowie eine Visualisierung mit-
tels Pfeil-Glyphen. Eine Verbesserung der Heuristik kann jedoch beispielsweise
durch Einbeziehen umliegender Voxel und Durchschnittsbildung erreicht wer-
den. Die durch den Algorithmus und die Heuristik initialisierten Kandidaten
müssen nicht zwangsläufig das gewünschte Ergebnis repräsentieren, es können
auch falsch positive gefunden werden. Diese lassen sich ebenfalls mithilfe der
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Benutzeroberfläche deaktivieren. Die Eigenschaften der gewünschten Kandida-
ten können dagegen noch modifiziert werden. Es wird das Verschieben entlang
der Mittellinie und das Anpassen des lokalen Durchmessers unterstützt, dessen
möglichst genaue Angleichung an die umliegende Gefäßwand für die Initiali-
sierung des Poiseuille-Geschwindigkeitsprofils wichtig ist. Zusätzlich kann für
jeden Einlass eine Anlaufphase definiert werden, bei dem die Strömungsge-
schwindigkeit bis hin zur Zielgeschwindigkeit uc langsam erhöht wird. Die ge-
samte Simulationsdomäne wird zu Beginn stets mit der Geschwindigkeit ~0
initialisiert, was bei unmittelbar anliegender Zielgeschwindigkeit zu einem ab-
rupten Dichteunterschied führt und Instabilität zur Folge haben kann [16]. Aus
diesem Grund wird in der Literatur für die Anlaufphase meist eine sinusoida-
le Geschwindigkeitsentwicklung gewählt, welche auch in der implementierten
Anwendung zur Verfügung gestellt wird. Sei td die angestrebte Dauer der Si-
mulation in Sekunden, dann wird die Dauer der Anlaufphase ts initialisiert
durch ts = 1

4
td, ist aber beliebig im Intervall [0, td] wählbar. Damit hat sie

standardmäßig einen nicht zu vernachlässigenden Anteil an der Simulations-
dauer. Die Magnitude der aktuellen Maximalgeschwindigkeit u(t) wird dann
für jeden Einlass berechnet durch

u(t) =

{
uc ·

sin(−π
2

+ t
ts
·π)+1

2
wenn t < ts

uc sonst.
(4.16)

Aktuell wird für jeden Einlass dieselbe Zielgeschwindigkeit angestrebt, da für
die verwendeten Datensätze jeweils nur genau ein Einlass notwendig ist. Das
Geschwindigkeitsprofil hängt allerdings vom jeweiligen Durchmesser ab. Als
Referenzwert für die charakteristische Geschwindigkeit uc wird automatisch
die maximale Geschwindigkeit innerhalb des Referenzdatensatzes gewählt (vgl.
Unterabschnitt 2.2.3).

Ferner lassen sich weitere Informationen aus dem Gefäßgraphen ermitteln,
welche als Anhaltspunkt für die Parametrisierung dienen können. So wird
unter anderem der minimale, maximale und durchschnittliche Durchmesser
durch den Algorithmus von Drees et al. ermittelt. In der Anwendung wird
dabei automatisch der durchschnittliche Durchmesser als Referenzwert für die
charakteristische Länge gewählt, sie erlaubt aber auch das manuelle Ausmes-
sen eines beliebigen Abstands. Dafür kann interaktiv ein Referenzpunkt der
Messung gewählt werden, dessen Abstand zu einem beliebigen anderen durch
Führen des Cursors angezeigt wird. Der Gitterabstand ∆x kann nun impli-
zit durch die charakteristische Länge l, sowie die Wahl der Auflösung N mit
∆x = l

N
angegeben werden. Da inkompressible Fluide simuliert werden sol-

len, muss die akustische Skalierung ∆t ∝ ∆x eingehalten werden. Verdoppelt
man also die räumliche Auflösung, muss die Länge eines Zeitschritts ∆t eben-
falls verdoppelt werden (vgl. Unterabschnitt 2.2.4). Aus diesem Grund ist eine
zeitliche Auflösung M Teil der Parametrisierung, mit welcher die Länge ei-
nes Zeitschritts durch ∆t = ∆x

M
berechnet werden kann. Der dimensionslose
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Relaxationsparamter τ ? wird dann vom verwendeten Framework anhand von
Gleichung 2.15 automatisch berechnet durch

τ ? =
1

c?2s

η

ρ

∆t

∆x2
. (4.17)

Ferner wird die dimensionslose Dichte ρ? wie in der LBM üblich auf den Wert
1 gesetzt. Der letzte festzulegende Parameter ist die Smagorinsky-Konstante
Cs, deren Effekt auf die Simulation nicht vorhergesagt werden kann. Aus die-
sem Grund wird ein Ensemble von Parametrisierungen erstellt. Dafür wird
für jeden der zuvor genannten Parameter (N,M, l, uc, η, ρ, Cs) ein Intervall
festgelegt. Die Grenzen sind dabei im Falle der Viskosität und Dichte durch
die Literaturwerte, im Falle der charakteristischen Länge und Geschwindigkeit
durch den Datensatz und andernfalls durch an der Literatur orientierte Werte
definiert. Die Intervalle können dann beliebig aber gleichmäßig diskretisiert
werden. Damit wird das Problem offensichtlich, dass aufgrund der hohen Pa-
rameterzahl eine Vielzahl von Simulationen notwendig werden würde. Bereits
bei einer Unterteilung der Intervalle in drei Werte wären letztlich 37 = 2187
Simulation notwendig, um das Zusammenspiel der Parameter zu analysieren.
Tatsächlich müssen jedoch nicht alle Kombinationen betrachtet werden. Die
charakteristische Länge und räumliche Auflösung definieren in Kombination
nur den Gitterabstand und werden lediglich beide verwendet, um die Kon-
figuration intuitiver zu gestalten. Des Weiteren sind der Gitterabstand und
die zeitliche Auflösung zwei Parameter, welche für die verwendete Simulati-
onsgeometrie einmalig bestimmt und dann für weitere Simulationen konstant
gehalten werden können. Sobald der Einfluss eines weiteren Parameters auf die
Simulation in Hinblick auf die Ähnlichkeit zu den gemessenen Daten ermittelt
wurde, kann dann anstelle des Intervalls ein einzelner Wert definiert werden.
Auf weitere Details diesbezüglich wird im Analyseabschnitt eingegangen.

Die Parametrisierungen erhalten dabei zur Identifizierung einen eindeutigen
Namen. Die Diskretisierung der Intervalle wird dabei auf höchstens 26 Ein-
heiten beschränkt, da mehr ohnehin nicht sinnvoll wären. So lässt sich jede
Einheit jedes Parameters mit einem Buchstaben des Alphabets kennzeichnen,
wodurch sich beispielsweise für zwei Parameter und zwei Einheiten je Intervall
die Zeichenfolgen AA, AB, BA und BB ergeben. Diese können ferner mit ei-
nem Präfix versehen werden, um verschiedene Gruppen von Simulationsläufen
innerhalb eines Ensembles zu unterscheiden. Das Ensemble selbst erhält eben-
falls einen Namen, um die Auswertung zu vereinfachen.

Die Ausgabe der Simulation kann ebenfalls konfiguriert werden. So kann
je nach Zweck für die Analyse gewählt werden, ob die makroskopische Ge-
schwindigkeit, deren Magnitude und der Druck aus dem Simulationsgitter re-
konstruiert werden sollen. Diese Liste ist prinzipiell beliebig erweiterbar, bei-
spielsweise um die Scherung an den Grenzen der Simulationsdomäne, bzw. an
den Gefäßwänden. In dieser Arbeit werden jedoch nur die Geschwindigkeit
und deren Magnitude verwendet, da für diese ein unmittelbares Äquivalent
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in den gemessenen Daten vorliegt. Bei einer Simulationsgeometrie der Sei-
tenlänge 50mm, einer charakteristischen Länge von 5mm, einer räumlichen
Auflösung von N = 40 und einer zeitlichen Auflösung von M = 20 würden für
eine Simulationsdauer von td = 2 s insgesamt 320 Zeitschritte mit jeweils 4003

Voxeln berechnet werden. Da letztlich jedoch nur statische Strömungen gemes-
sen wurden und somit simuliert werden soll, ist damit aber nur ein Bruchteil
der Daten notwendig, um die Ähnlichkeit untersuchen zu können. Von be-
sonderem Interesse ist dabei der zuletzt simulierte Zeitschritt, sowie einige
gleichmäßig verteilte, vorangegangene Zeitschritte, um den Verlauf der Simu-
lation einschätzen zu können. So ist beispielsweise ein früher Abbruch möglich,
wenn eine Simulation instabil wurde oder aber sie konvergiert nicht zu einer
statischen Strömung. Dabei wurden zwei Bedingungen implementiert, die zu
vorzeitigem Abbruch führen können. Zum einen darf in der LBM eine maxima-
le Geschwindigkeit von u?c gemäß Bedingung 2.18 nicht überschritten werden.
Zum anderen können Parametrisierungen dazu führen, dass entweder gar keine
Strömung entsteht oder diese konvergiert. Dafür wird die Standardabweichung
σ der durchschnittlichen Energie φ aller N Zeitschritte im Zeitraum der letzten
simulierten Sekunde über

σ(φ) =

√√√√ 1

N + 1

N∑
i=1

(φi − φ̄)2 < εφ̄ (4.18)

mit einem Schwellenwert ε = 10−5, multipliziert mit dem Erwartungswert φ̄,
verglichen [16]. Die durchschnittliche Energie berechnet sich dabei anhand der
quadrierten Geschwindigkeiten aller Zellen und bietet sich daher als Merkmal
für die Änderung des Systems an [16]. Im Falle der Konvergenz wird die Simu-
lation vorzeitig abgebrochen. Letztlich werden somit etwa 20 gleichmäßig über
die Simulationsdauer verteilte Zeitschritte ausgegeben. Eine weitere Möglichkeit,
die Ausgabegröße zu reduzieren, ist durch das Vermindern der räumlichen
Auflösung gegeben. Die Simulationen werden zunächst mit einer hohen Auflö-
sung durchgeführt, um ein physikalisch möglichst akkurates Ergebnis zu liefern.
Für die Analyse kann jedoch auch eine deutlich geringere Auflösung vollkom-
men ausreichend sein. Diese muss jedoch zunächst ermittelt werden, worauf in
einem folgenden Unterkapitel eingegangen wird.

Die Parametrisierungen können dabei interaktiv in einer zur Verfügung ge-
stellten Benutzeroberfläche konfiguriert werden. Zum Durchführen der Simu-
lationen wurden zwei Möglichkeiten implementiert. Die Konfiguration und Si-
mulation kann auf demselben Computersystem durchgeführt werden. Dabei
kann jede Parametrisierung einzeln ausgewählt und simuliert werden, was ins-
besondere für die Fehlersuche sinnvoll sein kann. Schließlich ist es kein triviales
Problem, eine funktionierende und gleichzeitig realistische Parametrisierung zu
finden. Da die Laufzeit für große Ensembles oder sogar einzelne Simulationen
je nach Größe, Parametrisierung und verwendeter Hardware mehrere Stunden
bis Tage betragen kann, wurde zudem eine Schnittstelle zum Palma II Re-
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chencluster der WWU Münster implementiert. Dieses stellt 434 Rechenknoten
mit jeweils 72 logischen Rechenkernen und mindestens 92GB RAM bereit, auf
welchem sowohl eine Intel-, als auch eine GCC-Toolchain zur Verfügung steht.
Die LBM bietet durch das uniforme Gitter optimale Eigenschaften zur Paralle-
lisierung, welche von dem verwendeten Framework OpenLB mittels OpenMP,
MPI, sowie einem hybriden Betrieb ausgeschöpft werden können. Aus der lo-
kal eingestellten Parametrisierung können Jobs für das Rechencluster erstellt
werden, was die potentielle praktische Größe von Ensembles immens anhebt.
Dafür wurde auf dem Cluster eine modifizierte Version des Simulationsquell-
codes für beide Toolchains kompiliert. Für das gesamte Ensemble wird dann
eine Konfigurationsverzeichnis erstellt, welches die Simulationsgeometrie und
die einzelnen Parametrisierungen enthält. Dieses wird per SSH auf das Cluster
übertragen und dann für jede Parametrisierung ein Job übermittelt, welcher in
die Warteschlange des System eingereiht wird. Für die Jobs können je Ensem-
ble die benötigten bzw. zu verwendenden Ressourcen eingestellt werden. Dabei
wird eine breite Verteilung der Jobs angestrebt, d. h. jedem Job werden wenige
Ressourcen zugeordnet, wohingegen viele Jobs gleichzeitig laufen können. Dies
hat bei großen Ensembles den Vorteil, dass die Jobs in etwa gleichzeitig abge-
schlossen sein werden und die Weiterverarbeitung unmittelbar erfolgen kann.
Das gleichzeitige Simulieren mehrerer Ensembles ist ebenfalls möglich. Letzt-
lich ist die Schnittstelle für andere Cluster adaptierbar, sodass diese bereits am
Institut für Medizinische Mikrobiologie der Universität Jena auf der dortigen
IT-Infrastruktur eingesetzt werden konnte.

4.2.4 Nachbearbeitung

Nach Beendigung aller Jobs eines Ensembles können die Ergebnisse per SSH
auf das lokale System übertragen und dort für die weitere Analyse präpariert
werden. Dafür wird für jede rekonstruierte Größe, also z. B. die Geschwindig-
keit, aus den vorliegenden Zeitschritten zunächst ein neues Ensemble erstellt.
Dies ist notwendig, da auch Größen rekonstruiert werden können, für die zur
Zeit kein Äquivalent der gemessenen Daten zur Verfügung steht. Auf der ande-
ren Seite muss nicht notwendigerweise jede der mit den gemessenen Daten zur
Verfügung gestellten Größen auch aus den Simulationen rekonstruiert werden.
In dieser neuen Struktur können somit gemessene und simulierte Daten zusam-
mengeführt werden, was für deren Vergleich unerlässlich ist. Ein weitere Vorteil
der Trennung nach den Größen ist, dass beispielsweise aus dem Ensemble, wel-
ches die Geschwindigkeiten enthält, andere Größen abgeleitet werden können
und somit ein neues Ensemble erzeugen. Die Analyseprozedur kann an dieser
Stelle unter der Verwendung von Python-Skripten beliebig erweitert werden.
Einige Möglichkeiten werden im Ausblick diskutiert. Des Weiteren können an
dieser Stelle auch Simulationsläufe aussortiert werden, welche nur einen Zeit-
schritt enthalten, also frühzeitig abgebrochen sind oder es können Ensembles
derselben rekonstruierten Größe beliebig kombiniert werden. Für jedes Ensem-
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ble kann daraufhin, unter Verwendung einer der bereits aufgeführten Metriken,
eine Ähnlichkeitsdarstellung generiert werden, aber auch für die Kombination
mehrerer Ensembles unterschiedlicher Größen. Beispielsweise kann so die Ge-
schwindigkeit, welche selbst eine Kombination von Magnitude und Richtung
darstellt, mit dem Druck und weiteren Strömungsrelevanten Größen kombi-
niert werden.

4.2.5 Analyse

Nachdem die Daten in ihrer finalen Form vorliegen, kann nun deren Analy-
se mithilfe der implementierten Anwendung erfolgen. Da es letztlich um den
Vergleich der Ähnlichkeiten der Ensembleteilnehmer untereinander geht, wird
der verbreitete Ansatz gewählt, zunächst einen Überblick über die Daten zu
bekommen und Details nur nach Notwendigkeit zu erhalten [4, 19]. Da zu Be-
ginn keine Kenntnis über die Auswirkung der einzelnen Simulationsparameter
besteht, müssen einige initiale Simulationen durchgeführt werden, um einen
Überblick zu bekommen. Dazu muss zunächst die zu simulierende zeitliche und
räumliche Auflösung gefunden werden, welche eine hinreichende physikalische
Präzision bietet, sowie die räumliche Auflösung der Ausgabe. Dafür werden alle
Parameter mit einem beliebigen, aber plausiblen Wert initialisiert (vgl. Unter-
abschnitt 4.2.3). Anschließend wird lokal eine Testsimulation gestartet, um die
zeitliche Auflösung festzulegen, wobei im Wesentlichen die Stabilität der Simu-
lation als Kriterium zu verwenden ist. Wurde eine stabile Konfiguration gefun-
den, kann nun durch die akustische Skalierung die räumliche Auflösung beliebig
verändert werden. Die Ausgabegröße des so generierten Ensembles wird nun
nicht im Vorhinein beschränkt, stattdessen werden zusätzlich niedrig aufgelöste
Versionen generiert und in das Ensemble eingefügt. Die Auflösung sollte dabei
zunächst so hoch wie möglich gewählt werden, bei gleichzeitiger Erhaltung der
Interaktivität der Anwendung. Für das so erhaltene Ensemble wird dann eine
Ähnlichkeitsdarstellung generiert und es kann visuell überprüft werden, wel-
che räumliche Auflösung für den Datensatz ausreichend ist. Im Idealfall liegt
eine Konvergenz der Ähnlichkeiten bei konstanter Erhöhung der Auflösung vor
und die in Zukunft verwendete kann durch das Abwägen der Ähnlichkeit zur
nächst höheren bestimmt werden. Da es sich hierbei um einen qualitativen
Prozess handelt, sollte im Zweifel eher eine höhere anstatt einer niedrigeren
Auflösung gewählt werden. Zusätzlich kann nun die Ähnlichkeit der gewählten
Simulation zu ihrer geringer aufgelösten Version betrachtet werden. Fällt diese
ebenfalls gering in Relation zur Ähnlichkeit zu anderen Auflösungen aus, so
wurde eine angemessene Auflösung für die Ausgabe gefunden. Falls nicht, kann
diese erhöht werden, bis ein zufriedenstellendes Ergebnis erreicht wurde. Da-
mit wird die Ähnlichkeitsdarstellung an den Anfang der Analyse gestellt und
bietet einen Überblick über das gesamte Ensemble. In einem nächsten Schritt
kann wie zuvor beschrieben nun auch der Einfluss der einzelnen Parameter
auf die Ähnlichkeit zu den gemessenen Daten bestimmt werden. Dafür werden
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nun die räumliche und zeitliche Auflösung fixiert und die Dichte, Viskosität,
charakteristische Geschwindigkeit und Smagorinsky-Konstante variiert, sodass
möglicherweise weitere Parameter fixiert werden können.

Die Ähnlichkeitsdarstellung bietet somit schon eine Grundlage, den gemes-
senen Daten ähnliche Simulationen zu generieren. Allerdings ist nicht klar,
woraus Unähnlichkeiten resultieren. Zur Beantwortung dieser Frage werden
interaktive Werkzeuge in koordinierten Ansichten geboten, deren Zusammen-
spiel im Folgenden erläutert wird.

Volumenvisualisierung Mittels DVR-Raycasting4 und einer passenden Trans-
ferfunktion kann die Magnitude eines einzelnen oder mehrerer Zeitschritte des-
selben oder verschiedener Ensembleteilnehmer nebeneinandergestellt visuali-
siert werden. Als Transferfunktion kann beispielsweise eine Heatmap, also ein
mit zunehmender Magnitude von rot über gelb nach weiß verlaufender Gradi-
ent, verwendet werden. Zusätzlich können Informationen über den jeweiligen
Zeitschritt in Textform eingeblendet werden, wie etwa die Simulationspara-
meter, der Zeitschritt und der Name des Simulationslaufs, bzw. der Messung.
Da die Magnitude keine Auskunft über die Richtung gibt, kann auch für jeden
Kanal eine eigene Transferfunktion gewählt werden. Da so jedoch das Problem
der Verdeckung von im Inneren liegenden Strömungen besteht, wird zusätzlich
eine Ebene visualisiert, welche anhand einer Griff-Metapher beliebig ausge-
richtet werden kann. Der Schnitt des Volumens mit der Ebene wird dann in
einer weiteren Ansicht dargestellt. Durch das Bewegen des Mauscursors kann
zu jedem Pixel des Schnitts die lokale Geschwindigkeit angezeigt werden. Da
die Ausrichtung des Schnittbildes jedoch nicht eindeutig ist, wird während der
Bewegung des Cursors gleichzeitig die entsprechende Position in der dreidi-
mensionalen Volumendarstellung angezeigt.

Strömungslinien Für jeden Zeitschritt können durch klassische Runge-Kutta-
Integration Strömungslinien generiert und als Menge von kolorierten Pfaden
visualisiert werden. Dabei können die lokale Richtung und Magnitude farblich
kodiert werden. Anhand der Strömungslinien zweier Zeitschritte lassen sich
optisch leicht Unterschiede in Hinblick auf Turbulenzen feststellen. Zusätzlich
können diese mit dem Quickbundles-Algorithmus [8] gebündelt werden, sofern
es aufgrund der Menge an Strömungslinien zur Verdeckung interessanter Re-
gionen kommt.

Differenzvisualisierung Das Visualisieren zweier Zeitschritte mit den genann-
ten Methoden kann bereits zu einer schnellen Feststellung der Herkunft der
Unähnlichkeit führen. Unterschiede können jedoch auch unauffällig sein, da
sie sich über die gesamte Domäne verteilen oder aber lokal begrenzt sind.
Dafür kann durch Bilden der Differenz beider repräsentativer Vektorfelder ein

4DVR: Direct Volume Rendering
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Abbildung 4.5: Die Benutzeroberfläche der Anwendung für den Endanwender.
Zu sehen sind die koordinierten Ansichten, welche über Inter-
aktion mit der Maus und der Tastatur zu bedienen sind. Auf
der rechten Seite befinden sich die logisch gruppierten Einstel-
lungsmöglichkeiten.

neues erzeugt und erneut mittels einer Volumenvisualisierung dargestellt wer-
den. Dafür sollte jeder Kanal eine unterscheidbare Transferfunktion erhalten,
sodass Regionen geringer Unterschiede eine hohe Transparenz und jene mit
großen Unterschieden eine hoher Opazität erhalten. Bewährt hat sich dabei
die Verwendung der Farben rot, grün und blau für die x-, y- und z-Richtung.
Auch hier kann, analog zur Volumenvisualisierung eines Zeitschrittes, ein be-
liebiger Schnitt durch das Volumen dargestellt werden, um Details im Inneren
erkennbar zu machen.

4.3 Die Anwendung

Basierend auf Voreen (vgl. Abschnitt 2.4) wurden alle genannten Werkzeuge in
einer interaktiven Anwendung mit koordinierten Ansichten vereint. Die Logik
wurde dabei durch vorhandene, modifizierte und zum Zwecke dieser Arbeit
erstellte Prozessoren in einem komplexen Netzwerk zusammengeführt, darge-
stellt in Abbildung 4.6. Für den Endanwender ist die Komplexität des Netz-
werks deutlich zu hoch, weshalb im sogenannten Anwendungsmodus nur die
wichtigsten Einstellungsmöglichkeiten logisch gruppiert zur Verfügung gestellt
werden. Die so erhaltene Anwendung ist in Abbildung 4.5 dargestellt.
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Abbildung 4.6: Das Netzwerk hinter der Anwendung. Einzelne Prozessoren bilden
Teilnetzwerke, beispielsweise zur Segmentierung oder Simulation
und sind entsprechend gruppiert. Zusätzlich sind viele Einstellun-
gen der Prozessoren über Links miteinander synchronisiert, welche
der Übersicht halber ausgeblendet wurden.
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Gegenstand dieses Kapitels ist das Anwenden der zuvor vorgestellten Ana-
lyseprozedur auf zwei vorliegende Datensätze unterschiedlicher Komplexität,
welche mittels Phasenkontrast-MR unter Verwendung von Phantomen akqui-
riert wurden. Diese sind in Abbildung 5.1 dargestellt. Als Fluid wurde je-
weils Leitungswasser bei Zimmertemperatur und Normaldruck verwendet, da
die Daten im Wesentlichen für die Erforschung neuer Strömungsmerkmale ge-
neriert wurden. Mithilfe dieser Merkmale sollen kritische Veränderungen des
kardiovaskulären Systems frühzeitig erkannt werden. Da ein Teil der notwendi-
gen Schritte für die Analyse beider Datensätze identisch abläuft, werden diese
exemplarisch am Beispiel des ersten erklärt. Bei diesem handelt es sich um
den denkbar simplen Fall laminarer Strömung in einer, bzw. mehrerer iden-
tischer Röhren, für den sich zudem eine analytische Lösung herleiten lässt.
Aus diesem Grund wurden zum Zweck der Validierung der Methoden synthe-
tische Daten generiert, auf welche im folgenden Unterabschnitt eingegangen
wird. Der zweite Datensatz ist dagegen komplex in Bezug auf die Simulati-
onsgeometrie, da es sich um ein Aneurysma-Phantom handelt. Da jeweils eine
statische Strömung angestrebt wurde, ist nur ein einzelner Zeitschritt je Mes-
sung vorhanden. Abschließend folgt eine Diskussion, in der die Erkenntnisse
der Analyse herausgestellt werden.

(a) Stabphantom (b) Aneurysma-Phantom

Abbildung 5.1: Die zwei in dieser Arbeit betrachteten Phantome. Zur Verfügung
gestellt von Verena Hoerr, Ali Nahardani und Philipp Rene Bo-
venkamp [2].
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(a) Gitterkonstante: 120µm (b) Gitterkonstante: 220 µm (c) Gitterkonstante: 320µm

Abbildung 5.2: Querschnitt durch den Stabphantom-Datensatz, welcher drei Mes-
sungen unterschiedlicher Auflösungen bei sonst identischen Bedin-
gungen enthält. Im Inneren sind die vier kleinen Röhrchen gut zu
erkennen, ebenso wie die unterschiedlichen Strömungsrichtungen,
welche mit weiß bzw. mit schwarz farblich kodiert sind. Die Daten
wurden von Ali Nahardani akquiriert.

5.1 Der Stabphantom-Datensatz

Beim sogenannten Stabphantom handelt es sich um einen Zylinder aus Acryl-
glas, welcher vier kleinere Röhrchen desselben Materials enthält. Zwei dieser
Röhrchen sind auf einer Seite über Schläuche an eine Pumpe angeschlossen und
die übrigen Enden wurden so miteinander verbunden, dass ein geschlossener
Kreislauf entsteht. Die Messung wurde mit einer von Ali Nahardani entwi-
ckelten Sequenz in einem 9.4 T-MR-Scanner mit verschiedenen Auflösungen
durchgeführt. Aus den so erhaltenen Daten wurde für jede Auflösung das Ge-
schwindigkeitsfeld rekonstruiert, deren Querschnitte in Abbildung 5.2 zu sehen
sind. Regionen mit starkem Rauschen waren während der Messung mit Luft
gefüllt, jene mit schwachem Rauschen hingegen mit stehendem Wasser. Für die
folgende Analyse wird dabei nun repräsentativ eines der vier inneren Röhrchen
verwendet. Zu den Daten existieren hierbei keine anatomischen Bilder, die für
eine Segmentierung herangezogen werden können. Daher wurde der Datensatz
mit der höchsten Auflösung gewählt und die Magnitude aus dem Vektorfeld
berechnet. Die Segmentierung wurde zunächst auf dem gesamten Datensatz
durchgeführt, analog zu dem in Unterabschnitt 4.2.2 vorgestellten Verfahren.
Im Detail wurden dabei Gauß- und Medianfilter zum Entfernen des Rauschens
angewendet, gefolgt von einer Binarisierung und einer Erosion, um das ho-
he Rauschen rings um die kleinen Röhrchen auszuschneiden. Die Ein- und
Auslässe wurden dann automatisch detektiert und die charakteristische Länge
und Geschwindigkeit auf den inneren Durchmesser der Röhrchen, bzw. auf die
höchste Magnitude im Datensatz gesetzt. Da sich die Strömungen zwischen
den vier Röhrchen nicht oder nur geringfügig unterscheiden, wird letztlich nur
eines repräsentativ für die weitere Analyse verwendet.
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(a) Ähnlichkeit der Magnitude bei
Änderung der Simulationsauflösung

(b) Ähnlichkeit der Richtung bei Änderung
der Simulationsauflösung

(c) Kombinierte Ähnlichkeit (Metrik 4.12)
von Magnitude und Richtung nach Entfer-
nen der Ausreißers und bei Änderung der
Simulationsauflösung

(d) Kombinierte Ähnlichkeit (Metrik 4.12)
bei Änderung der charakteristischen Ge-
schwindigkeit

Abbildung 5.3: Ähnlichkeitsdarstellungen zur Analyse des Stabphantom-
Datensatzes.

Zunächst muss die räumliche Simulations- und Ausgabeauflösung bestimmt
werden. Dafür wurde ein Ensemble generiert, bei dem die räumliche Simula-
tionsauflösung variiert und die Ausgabeauflösung nicht begrenzt wurde. Alle
anderen Parameter wurden auf plausible Wert gesetzt, d. h. für die Dichte
und Viskosität wurden die Literaturwerte für Wasser bei 20 ◦C gesetzt. Die
Smagorinsky-Konstante wurde auf den Wert 0.5 gesetzt, was bereits recht la-
minare Strömungen zur Folge haben kann (vgl. Unterabschnitt 2.2.4). Für
die räumliche Auflösung, welche sich auf die charakteristische Länge bezieht,
wurden die Werte 20, 40, 60, 80 und 100 gewählt, was entsprechend der physi-
kalischen Dimensionen des Datensatzes eine effektive Auflösung von 122, 245,
368, 491 und 614 Voxeln je Zeitschritt zur Folge hat. Als Simulationsausgabe
wurden dabei ausschließlich die Vektorfelder der Geschwindigkeiten gewählt.
Die zeitliche Auflösung wurde initial auf 20 gesetzt, was unmittelbar stabile
Simulationen lieferte. Die so erhaltenen Simulationsläufe wurden anschließend
auf eine Größe von 1283 Voxeln reduziert, da mit Auflösung jenseits von 2563

Voxeln je Zeitschritt keine interaktive Analyse mehr stattfinden kann. Aus die-
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sen und den hochaufgelösten Simulationsläufen wurde ein Ensemble erstellt,
welches mit der Ähnlichkeitsdarstellung, zu sehen in Abbildung 5.3, visualisiert
wurde. Die Dimensionen der Projektion wurden dabei stets so gewählt, dass die
verwendeten Hauptkomponenten den größten Teil der Informationen bewah-
ren. Die Betrachtung der Ähnlichkeiten in Bezug zur Magnitude offenbart eine
Konvergenz bei steigender Auflösung: Abbildung 5.3(a) zeigt fünf Paare von
Linien. Diese stellen die Entwicklung der Ähnlichkeit der fünf hoch aufgelösten
und dazugehörigen, niedrig aufgelösten Simulationsläufe dar. Der Farbgradi-
ent von violett über rot und orange zu gelb ist dem Anstieg der Auflösung
zuzuordnen. In jedem Paar stellt die untere der beiden Linien die niedrig auf-
gelöste Version dar. Wichtig ist an dieser Stelle, dass der Verlauf nicht durch
das Verringern der Auflösung beeinflusst wird. Dieser lässt insbesondere den
Einfluss der sinusoiden Anlaufphase bis t = 0.5 s erkennen, auf die ein wei-
testgehend konstanter Verlauf folgt. Interessant ist hierbei der Simulationslauf
der höchsten Auflösung, dargestellt in gelb, welcher einen anderen Verlauf auf-
weist, als ausgehend von den übrigen erwartet werden würde. Dabei sei an-
gemerkt, dass die Simulation aufgrund dem Überschreiten der maximalen Re-
chenzeit frühzeitig abgebrochen wurde. Der letzte berechnete Zeitschritt wurde
dafür als konstante Linie weitergeführt, um einen besseren Vergleich treffen zu
können. Der Fehler sollte dabei zu vernachlässigen sein, da das Ende der An-
laufphase noch erreicht wurde. Als nächstes wird der Verlauf der Ähnlichkeit
bezüglich der Richtung betrachtet, welcher in Abbildung 5.3(b) dargestellt ist.
Hier ist eindeutig der Simulationslauf mit der geringsten Auflösung als Aus-
reißer zu erkennen, was auf einen zu großen numerischen Fehler hindeutet.
Dieser Datensatz wurde daher aus dem Ensemble entfernt und anschließend
die Ähnlichkeit mit Metrik 4.12 berechnet, zu sehen in Abbildung 5.3(c). Da-
mit offenbart sich erneut die Konvergenz der Ähnlichkeiten. Zusätzlich ist eine
Minderung des Unterschiedes zwischen den niedrig aufgelösten Versionen zu
ihren hoch aufgelösten Äquivalenten bei steigender Auflösung zu verzeichnen.
Damit wird die räumlichen Auflösung der Ausgabe für folgende Simulationen
auf 1283 beschränkt und die der Simulation selbst auf 4913 Voxel.

In einem nächsten Schritt gilt es ein neues Ensemble zu generieren, in dem
andere Parameter variiert werden. Zur Auswahl stehen die Dichte und Visko-
sität, die charakteristische Geschwindigkeit und die Smagorinsky-Konstante.
Da es sich um eine simple Geometrie handelt, welche eine laminare Strömung
enthalten soll, werden die Dichte und Viskosität weiterhin bei ihren Literatur-
werten belassen. Die Smagorinsky-Konstante hat einen wesentlichen Effekt auf
das Verhalten turbulenter Strömung, welche bei der vorliegenden Geometrie
nicht zu erwarten ist. Daher wird diese weiterhin auf den Wert 0.5 gesetzt.
Vielmehr hat bei einer laminaren Strömung in einem Zylinder die Geschwin-
digkeit am Einlass einen sehr großen Einfluss auf das resultierende Vektorfeld.
Aus diesem Grund wird nun ausschließlich die charakteristische Geschwindig-
keit variiert. Ferner wurden synthetische Daten zum Zwecke der Evaluation
erstellt.
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(a) Visualisierung der Strömungslinien im Vektorfeld des Simulationslaufs mit der
höchsten charakteristischen Geschwindigkeit

(b) Visualisierung der Differenz der Vektorfelder eines gemessenen und der Simula-
tionslaufs mit der höchsten charakteristischen Geschwindigkeit.

Abbildung 5.4: Visualisierung der lokalen Unähnlichkeit anhand von
Strömungslinien und der Differenz zweier Vektorfelder.

Dabei wurde das Poiseuille-Geschwindigkeitsprofil (vgl. Unterabschnitt 2.2.3)
entlang der segmentierten Geometrie ausgewertet, sodass im Mittelpunkt des
Querschnitts die höchste Magnitude vorliegt und zum Rand hin quadratisch
abnimmt. Zusätzlich wurde ein Datensatz hinzugefügt, welcher konstant über
den gesamten Querschnitt die höchste Magnitude annimmt. Letztlich wurde
aus all den genannten Datensätzen ein Ensemble erstellt. Um einen Überblick
über dieses zu erhalten, wird erneut zu Beginn die Ähnlichkeitsvisualisierung
generiert. Nun und im Folgenden wird dabei stets Metrik 4.12 verwendet.
In Abbildung 5.4 sind der konstante (blau) und der Poisseuille-Datensatz
(violett) zu sehen, zwischen denen die Messungen verlaufen. In der unteren
Hälfte befinden sich die Kurven der simulierten Datensätze, wobei die linear
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von 100 mm s−1 bis 300 mm s−1 zunehmende, charakteristische Geschwindigkeit
durch den Gradienten von orange nach gelb repräsentiert wird. Wider Erwarten
nimmt die Ähnlichkeit der Simulationen zu den gemessenen und synthetischen
Daten mit zunehmender Magnitude ab. Die Ursache dafür findet sich durch das
Betrachten der Strömungslinien in den simulierten Daten, welche exemplarisch
für den Datensatz mit der höchsten Geschwindigkeit in Abbildung 5.4(a) dar-
gestellt sind. Offenbar treten unerwünschte Effekte beim Einlass auf, welche zu
einer lokal begrenzten Verwirbelung führen. Die Verwendung der Differenzvi-
sualisierung, zu sehen in Abbildung 5.4(b), zeigt diesen Effekt ebenfalls. Zudem
ist dort ein relativ homogener Unterschied der Magnituden zu sehen, welcher
auf die Längsachse des Zylinders beschränkt ist. Dies zeigt, dass die charakte-
ristische Geschwindigkeit zu gering gewählt wurde. In einer weiteren Iteration
kann nun ein weiteres Ensemble von Simulationen mit erhöhter charakteristi-
scher generiert werden. Dies führt zu diesem Zeitpunkt jedoch zu keiner neuen
Erkenntnis. Stattdessen kann festgehalten werden, dass an den Einlässen und
teilweise auch an den Auslässen unerwartete Effekte auftreten können, welche
mithilfe der Anwendung detektiert werden konnten.

5.2 Der Aneurysma-Phantom-Datensatz

Repräsentativ für eine komplexe Geometrie wurde die Nachbildung eines An-
eurysmas verwendet, welche im 3D-Druck erstellt und in Flüssiglatex getaucht
wurde, um eine gewisse Elastizität von Gefäßwänden nachzuempfinden. Die
Bewegung bzw. Expansion der Gefäßwände findet allerdings unterhalb der Ge-
nauigkeit der Messtechnik statt, sodass dieser Effekt für die Strömungssimula-
tionen vernachlässigt werden kann. Mit diesem Phantom wurden drei Messun-
gen von Philipp Rene Bovenkamp angefertigt. Aus der Analyse des Stabphan-
tom-Datensatzes ist bekannt, wie das Bestimmen der räumlichen Simulations-
und Ausgabeauflösung erfolgen kann und wird daher als gegeben angenommen.
Die Segmentierung wurde wie bereits in Abschnitt 4.2.2 erläutert und in Ab-
bildung 4.4 dargestellt, durchgeführt. Für den Aneurysma-Datensatz soll der
Effekt der übrigen Simulationsparameter auf den Simulationsverlauf ermittelt
werden. Dafür wurde ein Ensemble generiert, bei dem die Viskosität, Dichte
und charakteristische Geschwindigkeit modifiziert wurde. Dabei wurde Blut
als Fluid angenommen, um den Effekt von Dichte und Viskosität zu ermitteln.
Dafür wurde der in der Literatur spezifizierte Wertebereich (vgl. Tabelle 4.2)
durch drei Werte diskretisiert, wodurch der obere, untere und mittlere Wert
verwendet wurde. Aus vorangehender Analyse konnte die Erkenntnis gewon-
nen werden, dass die charakteristische Geschwindigkeit höher sein muss als
die maximale Magnitude im gemessenen Datensatz, um im späteren Verlauf
entsprechende Magnituden zu generieren. Aus diesem Grund wurde die cha-
rakteristische Geschwindigkeit für das Ensemble auf zwei, bis dreimal höhere
Werte gesetzt. Die Smagorinsky-Konstante wurde auf 0.1 festgelegt, da tur-
bulente Strömungen im Inneren des Aneurysmas nicht ausgeschlossen werden
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5.2 Der Aneurysma-Phantom-Datensatz

können.

(a) Projektion aller Ensembleteilnehmer (b) Projektion der Gruppe von Simula-
tionen, welche den gemessenen Daten am
ähnlichsten sind

Abbildung 5.5: Ähnlichkeitsdarstellung des Ensembles, welche mit dem
Aneurysma-Datensatz erstellt wurde.

(a) Strömungslinien im Vektorfeld der ge-
messenen Daten

(b) Strömungslinien im Vektorfeld der si-
mulierten Daten

Abbildung 5.6: Visualisierung von Strömungslinien im Vektorfeld der gemessenen
Daten und in dem entsprechend ähnlichsten Zeitschritt der Simu-
lation.

Nach der Durchführung der Simulationen offenbart die Ähnlichkeitsdarstell-
ung unter Verwendung von Metrik 4.12 erneut mehrere Gruppen, welche den
Einfluss der Parameter zeigen. Abbildung 5.5(a) zeigt die gemessenen Daten
(blau) am unteren Rand. Auf der linken Seite werden drei Gruppen sichtbar,
welche sich über die Zeit auffächern. Dabei liegt bei der untersten Gruppe die
höchste charakteristische Geschwindigkeit vor und bei der obersten entspre-
chend die niedrigste. Wird die Gruppe höchster Ähnlichkeit zu den gemessenen
Daten nun separat betrachtet, wird die Aufspaltung deutlicher. Dabei gehören
dieser Gruppe insgesamt neun Simulationsläufe an, von denen jedoch in Abbil-
dung 5.5(b) nur drei zu erkennen sind. Alleine die Änderung der Viskosität ist
dabei verantwortlich für die unterschiedliche Entwicklung der Kurven, denn
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5 Ergebnisse

jene drei der unterschiedlichen Dichten je Wert für die Viskosität verlaufen
exakt übereinander. Es ist nicht anzunehmen, dass das Variieren der Dichte
keinen Effekt hat, jedoch ist dieser offenbar vernachlässigbar im Vergleich zu
anderen Parametern. Für den Zeitschritt der Simulationsläufe, welcher den ge-
messenen Daten am ähnlichsten ist, wurden abschließend für einen Vergleich
Strömungslinien berechnet und visualisiert. Das in den gemessenen Daten ent-
haltene Rauschen ist dabei der wesentliche Grund für das Auftreten unter-
brochener Strömungslinien. Im Gegensatz dazu bieten die simulierten Daten
unterbrechungsfreie Strömungslinien, welche auch im Aneurysma zirkulieren.
Die dort vorherrschende Physik wird damit weitestgehend von der Simulation
und der entsprechenden Parametrisierung modelliert.

5.3 Diskussion

Die vorgestellten Methoden wurden auf zwei Datensätze unterschiedlicher Kom-
plexität angewendet. Dabei konnten Beobachtungen gemacht werden, die bei
dem verwendeten Lattice-Boltzmann-Verfahren, bzw. der Implementierung mit-
tels OpenLB, für die Parametrisierung und Analyse beachtet werden müssen.
So darf die Region unmittelbar an den Ein- und Auslässen nicht in den Ver-
gleich von Einsembleteilnehmern involviert werden, da dort unrealistische Wer-
te vorliegen können. Ferner muss die charakteristische Geschwindigkeit stets
deutlich höher gewählt werden, als die maximale Magnitude im gemessenen
Datensatz. Eine konkrete Regel diesbezüglich konnte bislang nicht ausgemacht
werden. Durch den Ensembleansatz konnte der Effekt der einzelnen Parameter
auf den Verlauf der Simulation ermittelt werden. Die Dichte spielt dabei die
geringste Rolle, gefolgt von der Viskosität. Den größten Einfluss hat die cha-
rakteristische Geschwindigkeit. Über den Effekt der Smagorinsky-Konstante
lässt sich für beliebige Simulationsgeometrien keine allgemeine Aussage tref-
fen, da Turbulenzen stark von deren Beschaffenheit abhängen. Die räumliche
Simulations- und Ausgabeauflösung sollte ebenfalls für jeden Datensatz ermit-
telt werden, um eine physikalisch akkurate Simulation zu gewährleisten.
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6 Fazit und Ausblick

Das Ziel dieser Arbeit war das Visualisieren von Ensembles bestehend aus mit-
tels 4D-Phasenkontrast-MR akquirierten sowie durch Strömungssimulationen
generierten Daten zum Zweck der Datenassimilation. Dafür wurde eine auf dem
Voreen-Framework basierende Anwendung implementiert, welche die gemes-
senen Daten verarbeiten, Strömungssimulationen durchführen und die Ähn-
lichkeit der beiden visualisieren kann. Dies beinhaltet die Segmentierung der
gemessenen Daten durch die Anwendung von Gauß- und Medianfiltern, ei-
ner Binarisierung, morphologischen Operation und Schwellenwertoperationen
sowie der abschließenden Extraktion einer Isofläche. Letztere wird als Simulati-
onsgeometrie verwendet und es lassen sich automatisiert Ein- und Auslässe an-
hand des Gefäßgraphen detektieren. Diese können für die Parametrisierung ei-
ner Lattice-Boltzmann-Simulation verwendet werden, deren Implementierung
auf dem OpenLB-Framework basiert. Die Ausführung dieser kann sowohl lokal
als auch auf einem Rechnencluster wie dem PALMA-II erfolgen. Die Werte ei-
niger weiterer Parameter lassen sich ebenfalls automatisiert anhand des Daten-
satzes festlegen, andere müssen jedoch experimentell ermittelt werden. Dafür
wurde ein Ensembleansatz gewählt, bei dem zunächst die allgemeine Auswir-
kung der Parameter auf den Verlauf der Simulation und die Ähnlichkeit zu den
gemessenen Daten bestimmt wird. Dadurch ließen sich die Dichte und Visko-
sität, sowie die zeitliche und räumliche Auflösung für weitere Simulationen fest-
setzen. Die maximale Geschwindigkeit des Poiseuille-Profils an den Einlässen
und der Wert der Smagorinsky-Konstante haben den größten Einfluss auf den
Verlauf der Simulationen. Dies konnte anhand einer Ähnlichkeitsdarstellung
unter Verwendung von klassischer Multidimensionaler Skalierung und verschie-
denen Metriken zur Generierung von Distanzmatrizen festgestellt werden. Be-
trachtet wurden dafür die Vektorfelder der Geschwindigkeiten jedes Zeitschrit-
tes, da diese sowohl für die gemessenen, als auch für die simulierten Daten
vorliegen. Die Ähnlichkeiten von Magnitude und Richtung wurden zunächst
getrennt ermittelt und anschließend zu einer neuen Distanzmatrix kombiniert,
wobei jeder Zeitschritt jedes Ensembleteilnehmers mit jedem anderen vergli-
chen wurde. Mit einem quasi-Monte Carlo-Ansatz wurden innerhalb der zu
vergleichenden Domäne randomisierte Datenpunkte ermittelt. Auf deren loka-
le Magnituden wurde die verallgemeinerte Feldähnlichkeit von Fofonov et al.
angewendet. Die Ähnlichkeit der Richtung zweier Vektorfelder wurde durch
den Durchschnitt aller Winkel zwischen den lokalen Richtungen an den Da-
tenpunkte definiert. Kombinationen der Distanzmatrizen beider Vektorfelder
wurden durch das Wählen des Maximums der Unähnlichkeiten sowie das Multi-
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6 Fazit und Ausblick

(a) Aufnahme mit der FLASH-Sequenz
(aktueller Goldstandard).

(b) Aufnahme mittels UTE-Bildgebung.

Abbildung 6.1: Querschnitt durch das anatomische Bild eines arbiträren Zeit-
schritts der beiden vorliegenden Datensätze zweier Mäuse. Im Zen-
trum ist jeweils das Herz der Maus zu sehen. Die Daten wurden
durch Verena Hoerr zur Verfügung gestellt.

plizieren der entsprechenden Ähnlichkeiten jedes Eintrags erzeugt. Damit lässt
sich zudem eine beliebige Anzahl von Merkmalen kombinieren. Die Ergebnisse
der händisch zu gewichtende Metrik von Jiang et al. waren dagegen auf synthe-
tischen Daten nicht sinnvoll interpretierbar. Das Projizieren der Ähnlichkeiten
erfolgte in bis zu drei Dimensionen, wobei die ersten drei Hauptkomponenten
und, im eindimensionalen Fall, die Zeit als Achsen verwendet wurden. Die Me-
thoden wurden auf einen Stabphantom- und einen Aneurysma-Datensatz der
Arbeitsgruppe Magnetresonanz des Instituts für Medizinische Mikrobiologie
der Universität Jena angewendet und mithilfe weiterer interaktiver Werkzeuge
in mehreren koordinierten Ansichten ausgewertet. Dazu gehört sowohl die Vo-
lumenvisualisierung einzelner Zeitschritte, mittels DVR-Raycastings und einer
beliebigen Schnittebene, als auch die Darstellung von Strömungslinien. Auch
die Differenz zweier Vektorfelder kann berechnet und ebenfalls in Gänze oder
im Schnitt betrachtet werden, um den genauen Ort der Unähnlichkeiten aus-
machen zu können.

Es wurde gezeigt, dass es kein triviales Unterfangen oder gar unmöglich ist,
eine Simulation zu generieren, die den gemessenen global sehr ähnlich ist. Da
Letztere starkes, durch die Messtechnik bedingtes Rauschen mit sich führen, ist
das Ziel mitnichten eine hochaufgelöste Reproduktion der gemessenen Daten
mittels physikalisch akkuraten Simulationen anzufertigen. Stattdessen soll an
dieser Stelle die Erkenntnis festgehalten werden, dass bestimmte lokale Merk-
male, die auf das Einsetzen oder Vorhandensein einer Krankheit hindeuten,
entweder in sowohl gemessenen als auch simulierten Daten vorkommen müssen
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oder aber in keiner der beiden. Dafür reicht die Verwendung der Geschwindig-
keit in Form von Magnitude und Richtung in den meisten Fällen nicht aus.
Es müssen also weitere Merkmale involviert werden, wie der Druck, die Sche-
rung an der Wand, die Vortizität und weitere. Es sollte somit vielmehr eine
physikalisch plausible Simulation durchgeführt werden, welche einen Teil der
wesentlichen Eigenschaften der gemessenen Daten widerspiegelt, wie Turbu-
lenzen, laminare Strömungen oder Druckgradienten. Dann ist möglicherweise
anzunehmen, dass auch andere Bereiche der Simulation der zugrunde liegen-
den Physik entspricht. Beispielsweise ist die Strömung unmittelbar entlang
der Gefäßwand bei gemessenen Daten oftmals technisch bedingt nicht akkurat
messbar. Teilweise haben abzweigende Gefäße einen derart geringen Durch-
messer, das keine Messtechnik mehr sinnvolle Daten liefern kann. Diese Da-
tenarmut und das allgemeine Problem der geringen räumlichen und zeitlichen
Auflösung der gemessenen Daten kann durch Simulationen kompensiert wer-
den, sofern an anderer Stelle eine ausreichende Übereinstimmung ermittelt
werden konnte. Damit stellt diese Arbeit eine Grundlage für fortgeschrittene
Datenassimilation dar, die Simulationen können beispielsweise durch eine Kop-
pelung an die gemessenen Daten gesteuert werden. Dafür bedarf es zudem der
Betrachtung von Zeitreihen gemessener Daten, welche in dieser Arbeit nicht er-
folgte. Es liegen bereits Datensätzen vor, welche den Herzzyklus zweier Mäuse
mit großen Teilen der Brustregion mit bis zu 50 Zeitschritten aufzeichnen, zu
sehen in Abbildung 6.1. Dabei wird stets an neuen Sequenzen für eine Ver-
besserung der Messergebnisse geforscht. Aktuell etabliert sind unter anderem
die sogenannte FLASH1-Sequenz, sowie die UTE-Bildgebung2. Die vorgestell-
ten Methoden können somit künftig auch verwendet werden, um verschiedene
Sequenzen, bzw. Bildgebungsverfahren miteinander zu vergleichen. Problema-
tisch ist bei den genannten Daten jedoch das starke Pulsieren der Aorta und
die Atembewegungen der Maus. Dies führt zu einer Änderung der Simulations-
geometrie über die Zeit. Bislang wurde in der Literatur primär die menschliche
Aorta untersucht, deren Bewegung in Relation zur räumlichen Auflösung ver-
nachlässigt wird. Die Segmentierung dieser komplexeren Daten kann zudem
beispielsweise mit dem halb automatischen Random-Walker -Verfahren erfol-
gen, bei dem manuell einige Labels für das Gefäßinnere und -äußere festgelegt
werden müssen. Die Transition von einer Geometrie zu der des nächsten Zeit-
schrittes ist jedoch in der Simulation zu berücksichtigen, was einen ganz eige-
nen Themenbereich definiert. Ferner kann die implementierte Anwendung um
weitere Werkzeuge erweitert werden, wie beispielsweise um Pfadlinien, welche
sich als Merkmal zum Vergleich von Zeitreihen heranziehen lassen.

1FLASH: Fast low angle shot
2UTE: Ultrashort echo time
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