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1 Einleitung

In der medizinischen Forschung beschéftigt man sich mit der Analyse von
Stromungen, zum Beispiel bei der Untersuchung von Krankheiten des kardio-
vaskulédren Systems. Mittels geeigneter Aufnahmetechnik, in diesem Fall dem
4D-Phasenkontrast-MR (4D PC MRI), wird dabei ein Bereich dieses Systems
gescannt, um Stromungen in diesem genauer untersuchen zu konnen [2.

Dabei wird meist die Trajektorie eines Teilchens in einer Fliissigkeit oder in
einem Gas betrachtet. Um allerdings Stromungen ausfindig zu machen, bedarf
es meist mehrerer solcher Trajektorien, die einen dhnlichen Verlauf aufweisen.
Ahnlichkeit ist hierbei beispielsweise durch raumliche Nihe oder Strémungs-
richtung definierbar.

In der Forschung genutzte Datenséitze enthalten meist an jedem Messpunkt
im dreidimensionalen Raum mindestens die lokale Stromungsrichtung und Ge-
schwindigkeit. Daraus lassen sich Trajektorien diskretisiert durch Stromungs-
linien (im Folgenden auch Streamlines) berechnen, mit denen die weitere Ana-
lyse durchgefiihrt wird.

Eine rein mathematische Auswertung ist dabei meist wenig intuitiv, weshalb
man sich einiger Methoden der Visualisierung bedienen kann. Eine héufig an-
gewendete Moglichkeit besteht darin, die Stromungslinien dreidimensional zu
visualisieren. Die so erhaltene Ausgabe kann dabei bei einem entsprechenden
Datensatz schwierig oder gar nicht verwertbar sein, da Rauschen und die teil-
weise chaotische Anordnung der Stromungslinien eventuell vorhandene Struk-
turen verstecken.

Thema dieser Arbeit wird sein, diese Art der Visualisierung durch das au-
tomatische Detektieren von Stromungen und das Filtern von Rauschen unter
Verwendung des QuickBundles-Algorithmus stark zu vereinfachen, sodass eine
initiale, visuelle Analyse schnell durchgefiithrt werden kann. An einer solchen
Auswertung ist man vor allem im medizinischen Umfeld interessiert, wenn es
um eine schnelle und einfache Diagnose geht. Als Beispiel sei ein Aneurysma
genannt, dessen mogliche Existenz fiir eine rechtzeitige Behandlung umgehend
bestétigt werden muss.

Als Grundlage fiir die Arbeit wird das Framework Voreen (Volume Rende-
ring Engine) dienen, welches von der Arbeitsgruppe Visualisierung und Com-
putergrafik (VisCG) an der Universitdt Miinster entwickelt wird [5]. Dieses
ist bereits dazu in der Lage, entsprechende volumetrische Datensétze zu laden
und daraus mit dem klassischen Runge-Kutta-Verfahren Stromungslinien zu
berechnen und diese in einfacher Form zu visualisieren. Voreen wird bereits im
medizinischen Umfeld genutzt [2].
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Die Arbeit besteht also im wesentlichen aus zwei Teilen. Zum einen miissen
die vom Framework berechneten Stromungslinien moglichst automatisiert ge-
biindelt und gefiltert werden, zum anderen muss das Resultat in eine visuelle
Darstellung iiberfiithrt werden, beispielhaft zu sehen in Abbildung Dafiir
wird eine intuitive Benutzerschnittstelle geschaffen, die eine einfache Anpas-
sung der erhaltenen Darstellung erlaubt und sich an vorhandene Konzepte in
Voreen anlehnt.

Als Anwendungsfall dient die Forschung von Philipp Rene Bovenkamp, der
fiir die Evaluation des Algorithmus Datensétze verschiedener Komplexitét zur
Verfiigung stellt.

(a) Vor dem Biindeln wund Filtern: (b) Nach dem Biindeln und Filtern: 16
5000 Stromungslinien. Der Verlauf der Biindel. Der Verlauf der Stromung und de-
Stromungen ist nur schwierig zu erkennen. ren Richtung ist klar zu erkennen.

Abbildung 1.1: Zu sehen sind zwei Darstellungsmdoglichkeiten eines Phantom-
Datensatzes (siehe Abschnitt [2.I)), bei dem eine Schraube in
den Strom der Fliissigkeit gesetzt wurde, die eine helixformige
Stromung erzeugt.
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Um die in dieser Arbeit verwendeten Algorithmen besser nachzuvollziehen,
werden zunichst einige Grundlagen erklirt und diskutiert. Neben einem Uber-
blick iiber die Methodik zur Erstellung der Datenséitze gibt es eine Einfiihrung
in das Framework Voreen, um dessen Verarbeitung der Daten ebenfalls mog-
lichst gut nachvollziehen zu koénnen.

2.1 Verwendete Datensatze

Die im Rahmen dieser Arbeit betrachteten Datensétze sind volumetrisch und
enthalten an jedem Messpunkt die Geschwindigkeit und Richtung der dort
gemessenen Stromung. Zudem ist die Information enthalten, wie grof3 der Ab-
stand zwischen je zwei Messpunkten ist (in mm). Diese Information ist fiir die
weitere Arbeit mit dem Datensatz von Bedeutung, da sich arbitriare Einheiten
fiir die Konfiguration der Parameter der verwendeten Algorithmen deutlich
weniger gut eignen, als gebrdauchliche Einheiten. Das Programm bzw. der Al-
gorithmus soll schliellich von Benutzern bedient und konfiguriert werden, die
keine Kenntnisse iiber den zugrundeliegenden Algorithmus besitzen, hingegen
jedoch iiber den verwendeten Datensatz.

Die Datensitze werden mittels 4D-Phasenkontrast-MR (4D PC MRI) er-
stellt [2]. Dabei wird zwischen sogenannten ,in vitro“ und ,,in vivo*“-Messungen
unterschieden. Ersteres bezeichnet das Erfassen von Daten an kiinstlich herge-
stellten Objekten, sogenannten Phantomen (zu sehen in Abbildung. Diese
lassen sich in reine Testobjekte und Nachbildungen eines biologischen Objek-
tes differenzieren. Ein Zylinder aus Acrylglas, wie in Abbildung zu se-
hen, ist ein solches Testobjekt. Er kann mit verschiedenen Aufsidtzen bestiickt
werden, die verschiedene Formen von Verwirbelungen erzeugen, wenn man ei-
ne Fliissigkeit hindurch leitet, dessen Messungen dann ausgewertet werden
konnen. Mochte man konkreter die Stromungen innerhalb eines biologischen
Objektes analysieren, ohne am lebenden Objekt messen zu miissen, so bil-
det man entsprechende Regionen am Computer nach. Das so erhaltene Mo-
dell wird dann mit einem 3D-Drucker erstellt und ist bereits sehr gut mit
seinem Original in Bezug auf das Stromungsverhalten vergleichbar [I]. Den-
noch wird der 3D-Druck erneut mithilfe von Fliissiglatex nachgebildet, um das
Stromungsverhalten insbesondere an den Gefédlwianden exakter nachempfin-
den zu konnen. Eine so erstellte Nachbildung eines Aneurysmas ist in Abbil-

dung [2.1(b)| zu sehen. Solche Phantome werden genutzt, um neue Methoden
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(b) Die Nachbildung eines Aneurysmas, erstellt mittels eines Nachgusses aus
Fliissiglatex eines 3D-Drucks, von Philipp Rene Bovenkamp

Abbildung 2.1: Zwei verschiedene Phantome zur Durchfiihrung von ,in vitro“-
Messungen, durch die Fliissigkeit geleitet wird. Daneben jeweils
die Visualisierung des durch 4D PC MRI erhaltenen Datensatzes
in Voreen, mit richtungsbasierter Farbkodierung (siehe Abschnitt

27).

erforschen und bekannte verbessern zu konnen, ohne auf lebende Objekte an-
gewiesen sein zu miissen. Letzteres ist meist deutlich aufwendiger und teurer,
sowie ethisch fraglich. Daher wird eine Methode erst anhand dieser Phantome
erprobt und validiert.

Fiihrt man eine sogenannte ,in vivo“-Messung am lebenden Objekt durch,
beispielsweise an einer Maus, beschrankt man sich meist auf eine bestimmte
Region. Im folgenden Beispiel wurde die Herzregion gewihlt, zu sehen wei-
ter unten in Abbildung Die Maus wurde fiir die Zeit der etwa einein-
halbstiindigen Messung narkotisiert und ihr Herzschlag dabei konstant ge-
halten [2]. Die bei den Messungen erhaltenen Daten werden getrennt nach
raumlicher Dimension, sowie Meta-Informationen, wie etwa dem Abstand der
Messpunkte, hinterlegt, sodass ein Datensatz letztlich aus mehreren Dateien
besteht.



2.2 Definition einer Strémungslinie

Im Folgenden wird ein solcher Datensatz jedoch mathematisch erfasst durch
eine vektorielle Funktion

f:R3 — R3,

welche jedem Punkt im Datensatz einen Richtungsvektor zuordnet, dessen Ma-
gnitude die Geschwindigkeit der Stromung am eingegebenen Datenpunkt an-
gibt. Alle iibrigen Informationen, wie der Abstand der Messpunkte, werden
der Einfachheit halber als konstant iiber alle Datensétze angenommen.

(a) Stromungslinien im zweidimensionalen (b) eine diskretisierte Stromungslinie
Vektorfeld

Abbildung 2.2: Links sind zwei Stromungslinien (rot und griin) in einem zweidi-
mensionalen Vektorfeld zu sehen. Die Pfeile geben die Richtung
an ausgewéhlten Punkten im Feld an, wobei die Lénge ihre Ma-
gnitude reprisentiert. Rechts ist schematisch eine diskretisierte
Stromungslinie bestehend aus fiinf Elementen skizziert. Die blauen
Pfeile markieren die Ortsvektoren der einzelnen Elemente, die ro-
ten reprisentieren deren Richtungsvektoren. Die Lénge der Rich-
tungsvektoren muss dabei nicht der Liange der Segmente entspre-
chen, die je zwei Elemente miteinander verbinden. Der schwarze
Pfad représentiert die Zusammengehorigkeit der Elemente.

2.2 Definition einer Stromungslinie

Mit Stromungslinien bezeichnet man im allgemeinen Kurven in einem Ge-
schwindigkeitsfeld, deren Tangentenrichtung an jedem Punkt mit den Richtun-
gen der Geschwindigkeitsvektoren im Feld iibereinstimmen (zu sehen in Abbil-
dung [2.2(a)]) [7, 11]. Damit kénnen sie eine geometrische Vereinfachung einer
Stromung innerhalb eines solchen Datensatzes darstellen und représentieren
somit eine Diskretisierung eines beliebig genauen Datensatzes. Eine weitere
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Eigenschaft ist, dass sich zwei Stromungslinien in keinem Punkt schneiden
kénnen, da in einem Punkt des Geschwindigkeitsfeldes nicht zwei verschiedene
Geschwindigkeiten herrschen kénnen. Eine solche Stromungslinie sei nun de-
finiert iiber eine vektorielle Funktion s’ : [0,1] C R — R3, wobei die Stelle 0
den Beginn und der Wert 1 das Ende der Stromungslinie s’ im Raum definiert.
In der Theorie sind diese Stromungslinien also mathematische Funktionen und
weisen daher auch eine beliebige Genauigkeit auf. Im Rahmen dieser Arbeit
wird diese Funktion jedoch numerisch ermittelt, was eine weitere Diskretisie-
rung entlang der Stromungslinie zur Folge hat (siehe Kapitel .

Diese Diskretisierung ist nicht zuletzt fiir die Visualisierung unabdingbar, da
diese nur mit endlicher Genauigkeit durchgefiihrt werden kann. Zudem lassen
sich die Informationen, die eine solche Strémungslinie beschreiben, von ihrem
Startpunkt im dazugehorigen Datensatz ausgehend, linearisiert abspeichern.
Dies vereinfacht die Weiterverarbeitung der Daten und ist schlussendlich erfor-
derlich wegen der Arbeitsweise der verwendeten Algorithmen in dieser Arbeit.

Eine solche, diskretisierte Stromungslinie s (zu sehen in Abbildung
bestehend aus k£ € N Elementen, ist im Folgenden definiert durch eine £x 3 Ma-
trix, wobei die drei Elemente jeder Zeile die Position im Raum beschreiben und
die erste Zeile somit die Position des ersten Elements in Stromungsrichtung.
Die Schreibweise s = [rq,79,...,r] erlaubt im Folgenden eine bei 1 begin-
nende, indizierte Referenzierung der Elemente. Da Stromungslinien immer in
Kombination eines Geschwindigkeitsfeldes berechnet werden, ist die lokale Ge-
schwindigkeit nicht Bestandteil der Definition, sondern ist durch den Funkti-
onswert der Funktion f (siehe vorangegangener Abschnitt) an der Position des
entsprechenden Elements gegeben, d. h. v; = f(r;),i =1,..., k.

2.3 Definition eines Biindels

Ein wesentlicher Bestandteil dieser Arbeit ist das Biindeln von Stromungslinien.
In der Literatur [3] ist ein solches Biindel definiert durch ein Tripel ¢ = (1, h, n),
wobei im Folgenden jedes Element mit dem o-Operator referenziert werden
kann. Hierbei ist I eine Liste, die alle Indizes der im Biindel enthaltenen
Stromungslinien s; enthélt, n ist deren Anzahl und A deren Aufsummierung,
dh. h =S¥ s, wobei die Summe " hier die Matrixaddition reprisentiert.
Diese kann natiirlich nur durchgefiihrt werden, wenn die Dimensionen der Ma-
trizen identisch sind, also die Stromungslinien dieselbe Anzahl an Elementen
haben. Dieses Problem wird durch Resampling mittels linearer Interpolation
gelost, was in Kapitel [3] beschrieben wird. Die Listen I verschiedener Biindel
sind disjunkt, da die Zugehorigkeit einer Stromungslinie zu einem Biindel ein-
deutig ist. Ein weiterer wichtiger Begriff ist der Centroid. Dies ist die re-
priasentative Stromungslinie v eines Biindels und wird ausgehend vom Tripel ¢
berechnet durch v = co h/con, wobei hier die tibliche Matrix-Skalar-Division
gemeint ist.
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2.4 Das Voreen-Framework

Voreen (Volume Rendering Engine) ist ein Framework zur Visualisierung me-
dizinischer Volumendaten, welches von der Arbeitsgruppe Visualisierung und
Computergrafik (VisCG) an der Universitat Miinster entwickelt wird [5].

Das Framework ist modular aufgebaut, sodass dessen tatsédchliche Funk-
tionalitdt frei konfigurierbar ist und basiert auf der Programmiersprache C++
und der OpenGL-API [9]. Im Rahmen dieser Arbeit wird der Fokus im Wesent-
lichen auf die Module Flowreen, welches Algorithmen zur Fluss-Visualisierung
enthéalt und Bovenkamp, benannt nach Philipp Rene Bovenkamp, welches das
Einladen eines von ihm entwickelten Dateiformats unterstiitzt, gelegt.

VolumeSource VolumeSource

OptimizedProxyGeometry OptimizedProxyGeometry
n

MeshEntryExitPoints MeshEntryExitPoints

SingleVolumeRaycaster

®
Background

Background
.

Canvas Canvas

(a) Beispielnetzwerk mit dessen Ausgabe (b) Beispielnetzwerk im Modus zum Kon-

im dazugehorigen Canvas figurieren der , Property-Links“, sowie die
Einstellsmoglichkeiten zweier Prozessoren
(blau markiert)

Abbildung 2.3: Zu sehen ist ein simples Beispielnetzwerk in Voreen. Die linke
Abbildung zeigt die Ausgabe des Bilddatenflusses, welcher iiber
die blauen Ports iibertragen und durch Ubermitteln der Daten
in den Canvas-Prozessor dargestellt wird. Die rechte Abbildung
zeigt dasselbe Netzwerk mit dessen ,,Property-Links“. Die Blocke
sind die Prozessoren, welche ihre Daten iiber die Verbindungen
(dunkle Pfeile) miteinander austauschen. Die hellgrauen Verbin-
dungen sind die ,,Property-Links“, iiber welche z.B. die Ausrich-
tung der Kamera zwischen den Prozessoren synchronisiert werden
kann.

2.4.1 Workflow und dessen Komponenten

In Voreen wird der Datenfluss iiber ein Netzwerk abgewickelt. Dieses Netzwerk
besteht aus Prozessoren, welche miteinander verbunden werden kénnen. Jeder
Prozessor stellt einen Knoten im Netzwerk dar, welcher je nach Funktiona-
litdt externe Daten einlesen, neue generieren, eingehende manipulieren oder
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visualisieren kann. Jeder Prozessor besitzt mehrere Einstellungsmoglichkeiten
und Ports, iiber welche die Prozessoren untereinander verbunden sind. Dabei
sind die Einstellungsmoglichkeiten iiber sogenannte ,, Property-Links® mitein-
ander verbunden, damit beispielsweise die Ausrichtung der Kamera in allen
Prozessoren synchronisiert ist (zu sehen in Abbildung [2.3). Uber die Ports
wird der Datenaustausch eingeschrénkt und gesteuert. Es wird unterschieden
zwischen eingehenden und ausgehenden Ports, womit die Datenflussrichtung
im Netzwerk definiert wird. Dabei sind die eingehenden Ports im Allgemeinen
an der Oberseite und ausgehende an der Unterseite eines Prozessors ange-
bracht, wodurch der Datenfluss von oben nach unten verlauft. Jeder Port ist
dazu in der Lage, eine fest definierte Datenstruktur entgegenzunehmen und
an den Prozessor weiterzugeben, wodurch die Verbindungsmoglichkeiten zwi-
schen den Prozessoren festgelegt werden. Dabei wird jede Datenstruktur durch
eine unterschiedliche Farbe des {ibertragenden Ports dargestellt. Der Zustand
eines Datenpakets, welches durch das Netzwerk geschickt wird, l&dsst sich an je-
dem Port einsehen, sodass der Datenfluss transparent ist. Eine besondere Rolle
nimmt dabei der Canvas-Prozessor ein. Dieser kann das Ende des Bilddaten-
flusses definieren, da er keine ausgehenden Ports besitzt. Seine wesentliche
Funktionalitdt besteht darin, die eingehenden Bilddaten anzuzeigen, weshalb
er Bestandteil von nahezu jedem Netzwerk ist.

Mithilfe dieses Netzwerkkonzepts und einer gewissen Auswahl von grundsétz-
lich mitgelieferten Prozessoren, die unterschiedlichste Aufgaben erfiillen, las-
sen sich schnell Visualisierungen verschiedenster Datensétze erstellen. Voreen
ist damit ein Rapid-Prototyping-Framework [5]. Die Funktionalitdt ist dabei
durch viele verfiighare Module frei erweiterbar. Jedes dieser Module fiigt neue
Prozessoren hinzu, die mit den vorhandenen verbunden werden kénnen und
so das Netzwerk erweitern. Des Weiteren werden alle Informationen iiber ein
Netzwerk und die Konfiguration der einzelnen Prozessoren in einem Workspace
gespeichert. Diese dienen der Persistierung des Zustandes der Anwendung mit-
tels der Speicherung in einem, auf XML basierten und fiir den Menschen les-
baren VWS-File (Voreen Workspace). Nach dem Wiedereinladen in Voreen ist
das Weiterarbeiten an genau dem Punkt der Speicherung moglich, beispielswei-
se mit den gleichen Fenster- und Kamerapositionen. Auf diese Weise koénnen
zudem verschiedene Applikationen, wie im folgenden Abschnitt beschrieben,
bereitgestellt und weiterentwickelt werden.

2.4.2 Das Flowreen Modul

Flowreen ist ein Modul von Voreen, welches Funktionalitidten zur Visualisie-
rung von Stromungen bietet. Es liefert dafiir eigene Datenstrukturen und Pro-
zessoren, die im Rahmen dieser Arbeit verwendet und erweitert werden. Die
Kernfunktionalitdt besteht dabei in der Erzeugung von Stromungslinien aus ei-
nem volumetrischen Datensatz (siehe Abschnitt[2.1]) sowie deren Visualisierung
und Export. Die Prozessoren, die diese Arbeit ibernehmen, sind der Streamli-
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(a) Richtungsbasierte Farbkodierung (b) Geschwindigkeitsbasierte Farbkodierung
(Werte geben die Geschwindigkeit in % re-
lativ zum hochsten Messwert im Datensatz
an)

Abbildung 2.4: Die verschiedenen Moglichkeiten der farblichen Visualisierung von
Stromungslinien, verdeutlicht anhand des Herzens einer Maus.

neCreator, Streamline Renderer3D und StreamlineSave. Die Prozessoren lassen
sich direkt miteinander verbinden, sodass die erstellten Strémungslinien ohne
Umwege visualisiert und exportiert werden kénnen.

Weiterhin existiert ein Prozessor zum Filtern der erstellten Datensétze, den
StreamlineSelector. Dieser erlaubt anhand mehrerer Einstellungsméglichkeiten
eine Auswahl der eingehenden Stromungslinien vorzunehmen, wie etwa durch
das Entfernen derer, die sich nicht innerhalb einer selbstdefinierten Box (Re-
gion Of Interest) befinden. Unabhingig von dieser Filterung lassen sich Stro-
mungslinien mittels des StreamlineRenderer3D-Prozessors in Form von farb-
kodierten Linien visualisieren. Es kann dabei zwischen einer richtungsbasier-
ten (Abbildung[2.4(a)) und einer geschwindigkeitsbasierten (Abbildung [2.4(D))
Farbkodierung gewéhlt werden. Die Interpretation des Farbwertes kann dabei
anhand des entsprechenden Overlays abgelesen werden, zu sehen jeweils rechts
unten in den Abbildungen. Der Export kann sowohl in ein Voreen-eigenes Da-
teiformat, als auch in eine CSV-Datei (Comma Separated Value) erfolgen.

2.4.3 Das Bovenkamp Modul

Fiir Philipp Rene Bovenkamp, dessen Forschung auf dem Gebiet der Stro-
mungsanalyse im medizinischen Umfeld diese Arbeit unterstiitzen soll, wurde
von der Arbeitsgruppe Visualisierung und Computergrafik (VisCG) ein ei-
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Abbildung 2.5: Netzwerk des Create-Workspaces

genes Modul entwickelt. Dieses hat die Aufgabe, die von ihm mit externer
Software erstellten Datensétze einlesen und bearbeiten zu konnen. Fiir die-
sen Zweck enthélt es den Create-, Select- und den Render-Workspace, wel-
che drei verschiedene Anwendungsbereiche abdecken. Ersterer beinhaltet die
Funktionalitdt zum Einladen der genannten Datensétze und zum Erstellen der
Stromungslinien, welche zugleich visualisiert und exportiert werden kénnen.
Der Select-Workspace erlaubt das Nachbearbeiten eines so erstellten Daten-
satzes durch die Selektion von Stromungslinien in bestimmten Bereichen, wobei
der Render-Workspace hingegen lediglich die Moglichkeit bietet, einen belie-
bigen Stromungsliniendatensatz beispielsweise fiir Demonstrationszwecke zu
visualisieren.

Der Create-Workspace (sieche Abbildung enthélt im Wesentlichen die
Funktionalitdt der beiden anderen Workspaces, weshalb er im Folgenden re-
préasentativ genauer betrachtet wird. Er bietet zunéchst die Moglichkeit, einen

10



2.4 Das Voreen-Framework

(a) Eine ausgewihlte Region innerhalb eines Datensatzes, sowie die enthaltenen
Stromungslinien vor (links) und nach (rechts) der Selektion

pd
Y
)\ 100
|</ 50
5cm \ ’

(b) drei orthogonale Schnitte durch einen Datensatz

Abbildung 2.6: Verschiedene Funktionalitdten, bereitgestellt durch das Boven-
kamp Modul.

entsprechenden Volumendatensatz (siche Abschnitt einzuladen (markiert
in rot). Bei den beiden anderen Workspaces wird an dieser Stelle hingegen
ein Stromungsliniendatensatz eingeladen, dessen Herkunft im Folgenden er-
klart wird. Die Daten werden nun an mehreren Stellen fiir unterschiedliche
Zwecke ausgewertet. Das Erstellen von Stromungslinien aus dem Datensatz
(markiert in griin) ist dabei die diesen Workspace auszeichnende Funktiona-
litdt und ist in den beiden anderen nicht enthalten. Im Select-Workspace wird
dagegen durch sogenannte StreamlineSelector-Prozessoren das Selektieren von
Stromungslinien erméglicht, wie im vorangegangenen Abschnitt erklért (siehe
Abbildung [2.6(a)]). Die erstellten Stromungslinien kénnen daraufhin optional
im Raum rotiert (markiert in hellblau) und visualisiert werden (markiert in
orange). Letzteres wird dabei unterstiitzt durch die Darstellung von sogenann-
ten Schnitten durch den Datensatz, sowie von diversen Overlays zum Ermit-

11
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teln seiner Ausrichtung, Grofle und Farbkodierung (siehe Abbildung [2.6(b))).
Zum einen gibt es die Moglichkeit einen beliebigen, vom Benutzer festgeleg-
ten Schnitt durch den Datensatz darzustellen (markiert in dunkelblau), zum
anderen konnen drei paarweise orthogonale Schnitte gerendert werden, wel-
che die Orientierung im Datensatz erleichtern sollen (markiert in gelb). All
diese Darstellungen werden letztlich zu einem Bild zusammengefiigt (mar-
kiert in lila) und koénnen durch einen Canvas-Prozessor ausgegeben werden.
Zusammenfassend lésst sich die Idee hinter den Workspaces mit folgendem
Workflow festhalten. Ein Volumendatensatz wird mit dem Create-Workspace
eingeladen und daraus mit den beschriebenen Visualisierungsmoglichkeiten
ein Stromungsliniendatensatz erstellt. Dieser wird exportiert und im Select-
Workspace importiert, wo enthaltene Stromungslinien weiter aussortiert wer-
den. Der so aufbereitete Datensatz wird erneut exportiert und im Render-
Workspace importiert. Dort werden die Stromungslinien zusammen mit drei
orthogonalen Schnitten, beispielsweise zu Demonstrationszwecken, visualisiert.
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3 Algorithmen

In diesem Kapitel wird das automatisierte Gruppieren von Strémungslinien
algorithmisch erfasst. Dafiir wird kurz die Funktionsweise des vorgelagerten
Runge-Kutta-Verfahrens erldutert, welches die Eingabedaten des QuickBundles-
Algorithmus liefert. Im Anschluss dieses Kapitels wird dann auf die Implemen-
tierung und Integration dieser Algorithmen in Voreen eingegangen.

3.1 Finden von Stromungslinien (Runge-Kutta)

Das Finden von Strémungslinien erfolgt unter Beriicksichtigung mehrerer dy-
namisch festlegbarer Parameter mittels des klassischen Runge-Kutta-Verfahr-
ens [§], welches im Modul Flowreen (siehe Abschnitt implementiert ist.

Dafiir werden unter Verwendung eines Zufallszahlengenerators innerhalb des
Volumendatensatzes Positionen bestimmt, die als Startpunkte fiir die Berech-
nung der Stromungslinien verwendet werden.

Sei f : R? — R? die Funktion, welche zu jedem Punkt des Datensatzes die
lokale Geschwindigkeit liefert (siehe Abschnitt , dann berechnet sich ein
Element r; der Stromungslinie, ausgehend vom Startpunkt ry unter Verwen-
dung der Schrittweite h durch

k k k k
7“7;4_1:7“1'—}-?14—?2—1‘?34—?4

mit
kl — fj(rz) h7
ko = f(ri+%5) - h,
k3:fA(rl+%)h7
ky= f(r; + k3) - h,

wobei f die benotigte Normalisierung von f denotiert.

Von den zufillig bestimmten Startpunkten ausgehend wird nachfolgend nu-
merisch mit dem genannten Verfahren in und entgegen der lokalen Stromungs-
richtung der Datensatz traversiert, bis ein Abbruchkriterium eintritt. Dies ist
der Fall, wenn die Grenzen des Datensatzes erreicht wurden oder die Geschwin-
digkeit der lokalen Stromung den eingestellten Schwellwert iiber- oder unter-
schreitet.
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3 Algorithmen

Algorithm 1 Modifizierter QuickBundles-Algorithmus [3]

Input: S = [s1,...,8i,...,84],¢ // Liste von Stromungslinien und Schwell-
wert
Output: C =cy,...,¢i,...,¢n) // Liste von Biindeln
1. C < empty // Zu Beginn gibt es keine Biindel

2: fori=1,...,ndo

3: t <— resampled(s;) // Resampling der Stromungslinie

4: dmin — 00

o: [+ 0

6: m < length(C)

7: for j=1,...,mdo

8: v < cjoh/cjon // Berechnung des Centroids des jten Biindels
9: d < dypr(v,t) // Berechne die MDF-Distanz zwischen v und t

10: if d < d,;,, then

11: dpmin < d // Aktualisiere minimale Distanz

12: l < j // Aktualisiere dazugehorigen Index

13: end if

14: end for

15: if d,,;, < € then

16: coh < ¢ oh+t // Aktualisiere die Summe der Stromungslinien
17: con < ¢on+1 // Aktualisiere die Anzahl der Stromungslinien
18: append(C; o I,i) // Fiige den Index in die Liste ein

19: else

20: Cm+1 < ([1],t,1) // Erstelle ein neues Biindel

21: append(C, ¢,,41) // Nimm es in die Liste aller Biindel auf

22: end if

23: end for

24: return C

3.2 Gruppieren von Stromungslinien
(QuickBundles)

Das Finden der Biindel wurde mittels einer modifizierten Version des Quick-
Bundle Algorithmus realisiert (siehe Algorithmus . Die Wahl fiel auf die-
sen, weil er im Vergleich zu anderen Gruppierungsalgorithmen wie k-means
[4] auf Geschwindigkeit und Speicherbedarf optimiert ist. Er kann zudem gut
mit sehr vielen Stromungslinien umgehen, da jede genau einmal betrachtet
wird. Der Algorithmus iteriert dabei iiber alle Strémungslinien und versucht
ein Biindel zu finden, dem er sie zuordnen kann. Das Entscheidungskriterium
dafiir, ob die Zuordnung stattfinden kann, ist durch eine Metrik dy;pr und
einen Schwellwert e definiert (siche folgender Unterabschnitt), wobei bei meh-
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3.2 Gruppieren von Strémungslinien (QuickBundles)

(a) direct Distanzen (b) direct-flipped Distanzen

Abbildung 3.1: Vergleich der verwendeten Metriken der MDF-Distanz.

reren moglichen Biindeln jenes mit geringstem Abstand gewéhlt wird (Zeilen
10-13). Bei erfolgter Zuordnung wird das entsprechende Biindel um die Infor-
mation erginzt (Zeilen 16-18) und die néchste Stromungslinie wird betrachtet.
Sollte kein solches Biindel gefunden werden, wird ein neues angelegt, dessen
Centroid gerade der betrachteten Stromungslinie entspricht (Zeilen 20-21). Fiir
das Anwenden der Metrik ist jedoch zundchst das Resampling (Zeile 3) aller
Stromungslinien auf dieselbe Anzahl von Elementen erforderlich (sieche Ab-
schnitt . Der Algorithmus hat keine Aktualisierungsphase der Biindel:
wurde eine Stromungslinie einmal einem Biindel zugeordnet, bleibt die Zu-
ordnung bestehen. Durch diesen Ansatz begriindet sich seine Geschwindigkeit

[3].

3.2.1 Abstand zwischen Stromungslinien (MDF)

Der QuickBundles - Algorithmus benétigt eine Funktion, die eine Distanz zwi-
schen zwei Stromungslinien berechnet. Diese Distanzfunktion ist in der Li-
teratur gegeben durch die ,Minimum average direct-flip“-Distanz [3]. Diese
Distanzfunktion beriicksichtigt, dass die einzelnen Elemente einer diskretisier-
ten Stromungslinien s = [rq,7g,..., 7] nicht in Richtung der Stromung ge-
speichert sein miissen, sondern auch in umgekehrter Reihenfolge, notiert als
s = [rg,rp_1,...,7r1]. Die folgende Metrik berechnet den durchschnittlichen
Abstand von zwei Stromungslinien unter paarweiser Betrachtung von je ei-
nem Punkt mit gleichem Index (siche Abbildung [3.1(a)]). Hierbei seien s,t
Stromungslinien mit je k& € N Elementen und |z — y| gebe die euklidische
Distanz zwischen zwei Punkten z,y € R3 an.

ddirect<87 t) - % Zfzo Irz(t) T TZ(S)‘
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3 Algorithmen

s'y

s
(a) Stromungslinie vor dem Resampling, be- (b) Stromungslinie nach dem Resampling auf
stehend aus sechs Elementen vier Elemente

Abbildung 3.2: Skizze des Resampling-Prozesses mit den betrachteten Elemente
und Absténden.

Die nachfolgende Metrik berechnet dieselbe Distanz wie die erste, jedoch ist
eine der beiden Stromungslinien gedreht, also die Anordnung der Elemente
vertauscht (siehe Abbildung [3.1(b)]).

dflipped(S, t) = ddz’rect(sg tF) = ddirect<SF, t)

Die MDF-Metrik berechnet das Minimum der beiden vorangegangen.

dMDF(37 t) = min(ddirect(sa t)) dflipped<37 t))

Da der verwendete Runge-Kutta-Algorithmus die Anordnung der Elemente in
Stromungsrichtung garantiert, vereinfacht sich die Funktion zu:

dyipr(s,t) = dgirect(S, 1)

Ferner kann diese Vereinfachung vorgenommen werden, da so Strémungslinien,
die in entgegengesetzte Richtung verlaufen, erst mit einem deutlich hoheren
Schwellwert zusammengefasst werden, als wenn man die dgippea(s, t) Funktion
verwenden wiirde. Somit ist die benétigte Distanzfunktion durch die dp;pp-
Metrik definiert. Diese lédsst sich allerdings nur auf zwei Stromungslinien mit
gleicher Anzahl an Elementen anwenden, wodurch das, im folgenden Unterab-
schnitt erlduterte, Resampling notwendig wird.

3.2.2 Resampling

Der QuickBundles Algorithmus arbeitet mit Centroids (sieche Abschnitt .
Fiir deren Berechnung ist es erforderlich, dass alle im Biindel enthaltenen
Stromungslinien dieselbe Anzahl an Elementen besitzen. Zusétzlich ist es not-
wendig, dass die Absténde zwischen den Elementen je Strémungslinie identisch
sind, damit es keine Gewichtung zwischen den Elementen des Centroid gibt.
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3.2 Gruppieren von Strémungslinien (QuickBundles)

Aus diesem Grund muss jede Stromungslinie vor der Betrachtung geresam-
pled werden. Dabei werden Start- und Endpunkt beibehalten und die iibrigen
Punkte per linearer Interpolation bestimmt. Gegeben sei eine Strémungslinie

s = [ry,r9,...,7,] mit n € N Elementen. Diese soll auf ¥ € N=? Elemente
geresampled werden, also s = [, 75, ..., 1]
Zunéchst wird der Abstand d; eines jeden Elements r;,i = 1,2,...,n zum

Startpunkt, also r; bestimmt, wobei mit Abstand die Summe der vorangegan-
genen Segmentldngen gemeint ist:

d; = Ele 7141 — 71

Dabei wird die Gesamtlénge [ .; von s zusétzlich bestimmt, sowie die neue, fiir
alle Segmente identische, Lénge [

lges = dn;
l — lges
seg = p-1-

Nun wird fiir jedes neue Element 1’ die Distanz d; vom Startpunkt mit

d; =7 Zseg
berechnet, woraufhin der Index p zum Element r} bestimmt wird, fiir den
/
gilt. Dies ldsst sich anhand von Abbildung [3.2] nachvollziehen. Jetzt kann der
Koeffizient t fiir die lineare Interpolation mit

d;—d,
dpy1—dp

t =

berechnet werden. Schlussendlich ergibt sich nun die Position eines Elements
7“;- mit linearer Interpolation:

ri=rp (1=1) +rpp1 -t

3.2.3 Laufzeitanalyse

Fiir die Ermittlung der Laufzeitkomplexitéit werden zunéchst die ins Gewicht
fallenden Parameter bestimmt. Zweifelsohne lasst sich die Anzahl der Strom-
ungslinien n als ein solcher festhalten, da grole Datensétze je nach Genauigkeit
beliebig viele enthalten konnen. Die Anzahl der Biindel m ist fiir die Zuordnung
einer Stromungslinie entscheidend und kann je nach Parametrisierung durch e
ebenfalls sehr grofl werden, jedoch nicht gréfler als n. Der Einfluss von € wird
daher implizit durch m ausgedriickt. Die maximale Anzahl [ von Elemente einer
Stromungslinie vor dem Resampling ist ebenfalls stark von der Parametrisie-
rung und dem Datensatz abhédngig. Die Anzahl von Elementen k£ nach dem
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3 Algorithmen

Resampling kann im Allgemeinen sehr klein gewéhlt werden (GréBenordnung
10") [3] und ist somit meistens kleiner, hochstens jedoch gleich .

Die Laufzeit des Resamplings wird nun der Einfachheit halber gesondert
berechnet, da sie fiir alle betrachteten Fille identisch ist. Sie ist gegeben durch

On-(+k)=0(n-1),

da je Stromungslinie die Distanzen zwischen allen aufeinanderfolgenden Ele-
menten, sowie die neuen Elemente berechnet werden miissen.

Betrachten wir nun die Laufzeit eines vollstandigen Durchlaufs des Quick-
Bundles Algorithmus im bestmdoglichen Fall. Dieser tritt ein, wenn die Anzahl
der Biindel minimal bleibt, also nach der Betrachtung der ersten Stromungslinie
immer genau ein Biindel existiert. Damit ist die Laufzeit mafigeblich durch die
Anzahl der Stromungslinien bestimmt, was zu einer Laufzeit von

On)+0mn-1)=0mn-1)

fiihrt.
Im durchschnittlichen Fall findet sich deutlich mehr als ein Biindel, wodurch
sich die Laufzeit zu

On-m)+0(n-1)=0n--(m+1))

verschlechtert. Da im Allgemeinen die Anzahl der Biindel jedoch deutlich klei-
ner ist, als die der Stromungslinien, d. h. m < n, kann die Laufzeit auch im
durchschnittlichen Fall durch

On)+O0m-1)=0m-1)

angegeben werden [3].
Im schlechtesten Fall ist die Laufzeitkomplexitéit jedoch durch

On*)+0n-1)=0n*+n-1)

anzugeben. Fiir e = 0 degeneriert die Anzahl der Biindel zu m = n. Zu diesem
Resultat kommt es, da Stromungslinien sich nicht schneiden koénnen (siehe
Abschnitt und somit der durchschnittliche Abstand niemals den Wert 0
annimmt. Dies hat letztlich zur Folge, dass es fiir jede Stromungslinie genau ein
Biindel gibt, woraus durch die zwei verschachtelten Schleifen die quadratische
Laufzeit resultiert.

3.3 Anwendbarkeit von QuickBundles

Der QuickBundles-Algorithmus bietet ein gutes Verhéltnis zwischen der Qua-
litdt des Ergebnisses der Gruppierung und der dafiir aufgewendeten Zeit, sowie
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3.3 Anwendbarkeit von QuickBundles

dem benoétigten Speicherplatz. [3]. Dafiir miissen allerdings gewisse Vorausset-
zungen erfiillt werden.

Zum einen miissen vorhandene Stréomungen durch mehrere Strémungslinien
repréasentiert werden, damit die Anwendung des Algorithmus iiberhaupt sinn-
voll ist. Ansonsten mangelt es an Referenz-Stromungslinien und er wird, je
nach der Wahl von e, vermehrt auch solche zusammenfassen, die eigentlich
nicht zusammengehoren. Aulerdem sollte die Lange der Stromungslinien mog-
lichst maximal sein. Ist dies nicht der Fall, und eine Stromung besteht aus
dhnlichen Stromungslinien, die allerdings nur eine sehr kurze Distanz iiber
parallel verlaufen, so werden diese hochstwahrscheinlich nicht zusammenge-
fasst. Ist der Schwellwert dagegen grofl genug, wiirde dies zu einer starken
Verkiirzung an beiden Enden der erkannten Strémung fithren, zu sehen in Ab-
bildung [3.3] Die Verkiirzungen Ax; und Axs werden signifikanter, je grofier
der Schwellwert ist. Verringert man diesen hingegen, erhoht sich die Anzahl
der Biindel.

Bei einem ungeeigneten Datensatz von Stromungslinien gibt es somit einen
Trade-Off zwischen der Minimierung der Anzahl der Biindel und der Exakt-
heit der rdumlichen Abdeckung einer Stromung. Fiir ein optimales Ergebnis
ist es daher notwendig, den Eingabedatensatz fiir den Algorithmus ebenfalls
moglichst optimal zu wéhlen.

A

\
_\

\,

AX; Axo

Abbildung 3.3: Skizze zweier Stréomungslinien (rot und blau), die zu einem Biindel
zusammengefasst werden (violett). Hier wird die Verkiirzung der
reprisentierten Stromung an beiden Enden sichtbar (Axzi, Azs),
die durch einen zu hoch eingestellten Schwellwert bei einem unge-
eigneten Datensatz entstehen kann.
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4 Implementierung von
QuickBundles

Das zentrale Ziel dieser Arbeit ist die Implementierung des in Abschnitt
vorgestellten QuickBundles-Algorithmus. Dieser soll in die bestehende Imple-
mentierung von Voreen eingearbeitet werden. Dafiir ist es notwendig, beste-
hende Datenstrukturen und Prozessoren anzupassen, sowie neue zu ergénzen.
Ein besonderes Augenmerk wird dabei auf die Konsistenz zum vorhandenen
Quelltext sowie auf einen moglichst modularen Aufbau gelegt. In den folgen-
den Abschnitten werden die einzelnen Bestandteile der Implementierung im
Detail erklért.

Die verwendete Programmiersprache ist C++. Dies ist im Wesentlichen
durch die Nutzung der Sprache in dem zu erweiternden Framework Voreen
begriindet.

4.1 Integration in das Flowreen Modul

Der vorgestellte Algorithmus (siehe Abschnitt wurde in das Modul Flowreen
(siehe Abschnitt integriert. Insbesondere wurde auf eine inkrementelle

Implementierung Wert gelegt, damit die bestehende Funktionalititen moglichst

unangetastet bleiben. Dieser Abschnitt beleuchtet die im Rahmen der Imple-

mentierung notwendig gewordenen Anderungen am vorhandenen Quelltext,

sowie dessen Ergidnzungen.

4.1.1 Der Datenfluss

Der wesentliche Teil des Datenflusses vom Einladen eines Volumendatensatzes
(siehe Abschnitt[2.1]) bis hin zum Visualisieren der Stromungslinien und Biindel
wird nun anhand des Klassendiagramms (siehe Abbildung erlautert.
Nachdem ein Datensatz eingeladen wurde, startet der StreamlineCreator-
Prozessor einen Thread, hier StreamlineCreatorBackgroundThread, der im Hin-
tergrund der laufenden Anwendung mit dem Runge-Kutta-Verfahren Stro-
mungslinien (Streamline) berechnet. Diese werden in einer Datenstruktur (Stre-
amlineList) gespeichert, die vom Streamline Creator-Prozessor verwaltet wird.
Die Streamlines werden nach Abschluss der Berechnung bereits iiber einen
entsprechenden Port (siche Abschnitt freigegeben, sodass ein angebunde-
ner StreamlineRenderer3D-Prozessor diese visualisieren kann. Im Hintergrund
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4 Implementierung von QuickBundles

,;A StreamlineCreator | ~
1
h 4 h
StreamlineCreatorBackgroundThread StreamlineBundleDetectorBackgroundThread
D 1 1 2
q-:x:rcaltcs:-} ‘-:-:Bl'cétcs>}
D ' 2
4 A4
Streamline StreamlineBundle
¥ h 4 h 4
StreamlineList
F 3
1

StreamlineRenderer3D

Abbildung 4.1: UML-Diagramm der wichtigsten Klassen. Der blaue Bereich bein-
haltet die verdnderten, der rote die hinzugefiigten Klassen.

wird in der Zwischenzeit vom StreamlineCreator-Prozessor ein neuer Hinter-
grundthread gestartet, hier Streamline BundleDetector Background Thread. Die-
ser fithrt den QuickBundles-Algorithmus auf den zuvor berechneten Streamli-
nes aus und speichert die gefundenen Biindel (StreamlineBundle) in derselben
StreamlineList-Datenstruktur, die auch die Streamlines speichert. An dieser
Stelle wird deutlich, warum eine Verwendung von Hintergrundthreads sinnvoll
ist. So lasst sich die Visualisierung der Stromungslinien bereits uneingeschrénkt
betrachten, wiahrend die Berechnung der Biindel ablduft. Zudem kénnen so die
Parameter auch jederzeit angepasst werden. Sollte die Berechnung noch nicht
abgeschlossen sein, wird sie abgebrochen und startet unmittelbar erneut, mit
der neuen Konfiguration.

Der QuickBundles-Algorithmus wurde noch um eine recht simple Rausch-
unterdriickung erweitert. Dafiir wird ein weiterer Schwellwert definiert, der
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4.1 Integration in das Flowreen Modul

die Mindestanzahl an Stromungslinien innerhalb eines Biindels angibt. Nach
dem Durchlaufen des Algorithmus wird jedes Biindel erneut betrachtet und die
darin enthaltene Anzahl mit dem Schwellwert verglichen. Wird dieser unter-
schritten, so wird das Biindel verworfen und die enthaltenen Strémungslinien
als Rauschen klassifiziert. Dafiir wurde die StreamlineList-Datenstruktur er-
weitert, sodass sie zu den enthaltenen Streamlines noch die gefundenen Stream-
lineBundles, sowie eine Liste speichert, welche die als Rauschen klassifizierten
Streamlines beinhaltet.

Dieser simple Ansatz ist effektiv, da bereits ein Schwellwert von einem Pro-
zent der Gesamtzahl der Stromungslinien das meiste Rauschen filtern kann,
was experimentell ermittelt wurde. Dennoch sollte der Algorithmus ohnehin
auf einem Datensatz operieren, der moglichst frei von Rauschen ist.

4.1.2 Formen der Visualisierung

Neben dem Gruppieren der Strémungslinien ist die Uberfithrung der Biindel
in eine moglichst intuitive, visuelle Darstellung eine entscheidende Aufgabe.
Dafiir wurden fiir unterschiedliche Anforderungen verschiedene Darstellungs-
moglichkeiten in den StreamlineRenderer3D-Prozessor integriert, welche die
vorhandene Stromungslinienvisualisierung ergénzen (siche Abbildung [4.2(a)]).
Der Benutzer kann zwischen einer Liniendarstellung, einer Zylinderdarstellung
und einer Pfeildarstellung wéhlen. Jede der Moglichkeiten basiert auf den Cen-
troids der Biindel (siehe Abschnitt und stellt diese letztlich auf verschie-
dene Art und Weise dar.

Liniendarstellung: Die Liniendarstellung (siche Abbildung [4.2(b)|) enthélt
minimale Informationen, d. h. lediglich iiber den rdumlichen Verlauf des Cen-
troids eines Biindels und ist analog zu der Visualisierung der Stromungslinien
implementiert. Die Dicke der Linien wurde um den Faktor 3 angehoben, sodass
eine Unterscheidung zu Strémungslinien moglich wird. Dieser Faktor wurde
experimentell ermittelt und bietet einen guten Ausgleich zwischen Erkennbar-
keit und Linienform, in Relation zu der Zylinderdarstellung. Diese Darstel-
lungsart ist bevorzugt zu verwenden, wenn viele Biindel ermittelt wurden oder
man sich einen Uberblick iiber die tatséchlich exportierten Daten verschaffen
mochte. Neben den dicken Linien sind zudem einige feinere zu sehen. Dies sind
Stromungslinien, die als Rauschen klassifiziert wurden. Sie werden in diesem
Beispiel unverédndert dargestellt, kénnen aber auch ausgeblendet werden.

Zylinderdarstellung: Eine andere Moglichkeit ist die Zylinderdarstellung (sie-
he Abbildung . Diese entspricht einem Centroid, welcher auf einen be-
stimmten Radius ausgeweitet wurde. Dies bedeutet insbesondere, dass jedes
Element einer Stromungslinie durch einen Kreis anstelle eines Punktes definiert
wird, da dieser einem Schnitt durch den Zylinder entspricht.
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(b) Biindel in der Liniendarstellung mit Rauschen

{

(c) Biindel in der Zylinderdarstellung mit Rauschen
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(d) Biindel in der Pfeildarstellung mit Rauschen

Abbildung 4.2: Die verschiedenen Formen der Visualisierung
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4.1 Integration in das Flowreen Modul

Betrachtet man einen Kreis, dessen Mittelpunkt an einem Element v; eines
Centroids v innerhalb eines Vektorfeldes f angelegt ist, dann liegt dieser Kreis
in einer Ebene, dessen Normalenvektor 77 definiert ist durch

|~

n=

=y

mit

f(vi) + f(Ui+1)

DT ol T el
Zwei aufeinanderfolgende Kreise werden miteinander verbunden, sodass aus
je zwei Kreisen ein Zylinder mit nicht notwendigerweise parallelen Kappen
entsteht, da die Normalenvektoren im Allgemeinen nicht linear abhéngig sind.
Da fiir je zwei aufeinanderfolgende Zylinder zwei dieser Kappen kongruent sind,
konnen alle Zylinder entlang der Stromungslinie zu einem unterbrechungsfreien
Schlauch zusammengefasst werden.

Pfeildarstellung: Eine weitere Moglichkeit ist die Pfeildarstellung (siche Ab-
bildung [4.2(d))). Diese erweitert in gewisser Form die Zylinderdarstellung, in-
dem die einzelnen Zylinder verkiirzt und mit Pfeilspitzen versehen werden,
wodurch die Stromungsrichtung unmittelbar ersichtlich wird.

Bei der Zylinder- und Pfeildarstellung stofit man auf das Problem der De-
finition des Radius solcher geometrischer Korper. Bei den aus Zylindern be-
stehenden Schlduchen kann man sich zwei Szenarien iiberlegen. Entweder, ein
solcher Schlauch hat einen einheitlichen Radius oder der Radius jedes Kreises
entspricht den lokalen Ausmafien der Stromung. Die Verwendung eines nicht
konstanten Radius ist denkbar, allerdings ist dieser Ansatz anfillig gegeniiber
Stromungslinien, die nicht optimal dem Verlauf der zugehdrigen Stromung
folgen, was durch Rauschen im Datensatz verstirkt wird. In dieser Arbeit
wird daher ein einheitlicher Radius verwendet, da so der Verlauf der Biindel
gleichméfig und iibersichtlich visualisiert werden kann.

Zur Ermittlung des Radius wird eine grobe Approximation verwendet, was
letztlich durch den Geschwindigkeitsvorteil begriindet ist. Der Radius berech-
net sich aus dem gemittelten Abstand des Centroids zu den enthaltenen Stro-
mungslinien und wird ebenfalls verwendet, um die Lédnge der Pfeile in der
Pfeildarstellung zu bestimmen. Dafiir wird der Centroid so geresampled (siehe
Abschnitt , dass die neue Segmentlinge gleich dem Radius multipliziert
mit dem Faktor 4 ist. Die experimentelle Ermittlung dieses Faktors begriindet
sich durch den Wahrnehmungsvorteil in Bezug auf die Stromungsrichtung, den
die Pfeildarstellung im Vergleich zur Zylinderdarstellung bieten soll. Es werden
keine zuséatzlichen Informationen dargestellt.

Nach dem Erstellen der Geometrie muss diese eingefirbt werden, um den
rdumlichen Verlauf wahrnehmen und eine Farbkodierung anwenden zu konnen.
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4 Implementierung von QuickBundles

Die Informationen fiir die Farbkodierung der drei vorgestellten Moglichkeiten
zur Visualisierung der Biindel werden dabei aus deren Centroids entnom-
men. Bei der Aufsummierung der enthaltenen Stromungslinien wird fiir jedes
Element des Centroids die gemittelte lokale Geschwindigkeit bestimmt. Die-
se wird fiir das Einfarben der Biindel verwendet, analog zur Farbkodierung
der Stromungslinien selbst (siehe Abschnitt . Bei der richtungsbasierten
Farbkodierung wird dabei die Richtung der lokalen Stromung in einen Farb-
wert iibersetzt. Der Anteil des normalisierten Richtungsvektors in x-Richtung
kann z. B. als Rotanteil interpretiert werden. Die geschwindigkeitsbasierte
Farbkodierung interpretiert dagegen die Magnitude des Richtungsvektors als
Intensitdtswert. Dieser kann dann, ausgehend vom maximalen Geschwindig-
keitswert, in eine Farbe eines eindimensionalen Farbverlaufs iibersetzt werden

(siehe Abbildung [2.4).

Streamline Bundle Settings
Detect Streamline

Bundles
Progress: 100%

Max. Average

Distance Threshald D 1,96 [+
{mm})
Minimal number of
Streamlines per D ® 10 |5
Streamline Bundle Settings Bundlel
i Streamline -
gslzedlc;ssteamllne ] Resample Size D D =

(a) Gruppieren von Stromungslinien deak- (b) Gruppieren von Stréomungslinien akti-
tiviert viert

Abbildung 4.3: Die Gruppe von Einstellungsméglichkeiten fiir die Biindelung im
StreamlineCreator-Prozessor

Render: @ Streamlines (Mo Bundles available] Render: [Streamlines vl
Streamline : [Lines I~ i ] Streamline Style: [Lines - l
Streamline Bundle i

Arrows - Streamline Bundle
Style: [ ( J ] Style: [Arrows - l
= [Direcﬁon h ] Color: [Direr_tion - l

(a) Visualisierung von Biindeln deaktiviert (b) Visualisierung von Biindeln aktiviert

Abbildung 4.4: Die Einstellungsmoglichkeiten fiir die Visualisierung im Streamli-
neRenderer3D-Prozessor
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4.2 Die Benutzerschnittstelle

Die Benutzerschnittstelle ist ein wichtiger Bestandteil, vor allem aus Sicht des
Anwenders. Ziel ist es, eine moglichst intuitive Konfiguration des im vorange-
gangenen Abschnitt implementierten Algorithmus zu gewéhrleisten. Die Bedie-
nung soll sich dabei ebenfalls an den bereits Vorhandenen Benutzerschnittstelle
orientieren, um eine einheitliche Bedienung zu wahren.

Im Zuge der inkrementellen Implementierung ist das Gruppieren der Stro-
mungslinien zu Biindeln optional. Die Funktionalitdt ist standardméfig de-
aktiviert und kann in der Benutzerschnittstelle des StreamlineCreators akti-
viert werden (siche Abbildung [4.3(a)]). Entscheidet sich der Benutzer, diese
zu aktivieren, so wird eine neue Gruppe von Einstellungen sichtbar, welche
ausschlieBlich fiir das Biindeln der Stromungslinien relevant sind (siehe Abbil-
dung [£.3(D)). Der Parameter ,Max. Avg. Distance Threshold“ (1) spezifiziert
hierbei den Grenzwert in mm, der fiir die Zuordnung einer Strémungslinie zu
einem Biindel ausschlaggebend ist. Der implementierte Algorithmus betrach-
tet alle Stromungslinien und versucht jede einem Biindel zuzuordnen. Dabei
ist der durchschnittliche Abstand zwischen Biindel und Stromungslinie (siehe
Abschnitt der Wert, welcher den eingestellten Wert nicht iiberschreiten
darf, um dem Biindel zugeordnet zu werden.

Der durchschnittliche Abstand kann die Abmessung des Datensatzes mit
Gewissheit nicht iiberschreiten, wodurch der Parameter durch das Intervall
[0,d] C R eingeschriankt werden kann, wobei d die Linge der Diagonalen durch
den Datensatz darstellt. Auf diese Weise wird die Anzahl der moglichen Ein-
stellung des Parameters, die zu einem unerwiinschten Ergebnis fithren kénnen,
unabhéngig vom Datensatz stark reduziert.

Eine dhnliche Einschrankung existiert fiir den ,Minimal number of Stre-
amlines per Bundle* Parameter (2). Dieser wird fiir die Entscheidung heran-
gezogen, ob ein Biindel als solches weiterverarbeitet wird oder die enthalte-
nen Stromungslinien als Rauschen interpretiert werden. Enthélt das Biindel
nach dem vollstdndigen Durchlauf des Algorithmus mehr oder genauso viele
Stromungslinien, wie mit dem Parameter eingestellt wurden, dann wird das
Biindel als zentrale Stromung interpretiert und weiterverarbeitet. Enthélt es
weniger, so werden alle enthaltenen Stréomungslinien als Rauschen im Daten-
satz interpretiert und das Biindel wird verworfen. Der Wertebereich ist hierbei
eingeschrankt durch: [0,n] C R, wobei n die Anzahl an Stromungslinien re-
prasentiert.

Der Parameter ,Streamline Resample Size* (3) spezifiziert die Genauigkeit
der Diskretisierung der Stromungslinien. Die zuvor gefundenen Stromungslinien
werden im Normalfall durch eine unterschiedliche Anzahl von Elementen und
verschieden langen Absténden zwischen den Elementen beschrieben. Der zum
Gruppieren verwendete Algorithmus sieht dagegen fiir alle Stromungslinien ei-
ne identische Anzahl an Elementen jeder Stromungslinie und identisch lange
Absténde zwischen den Elementen innerhalb einer Stromungslinie vor, um zu
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4 Implementierung von QuickBundles

funktionieren. Daher ist es notwendig, alle Stromungslinien vor der Gruppie-
rung umzurechnen, um diese Bedingungen zu erfiillen. Der Parameter gibt
dabei an, auf wie viele Elemente jede Stromungslinie umgerechnet wird. Der
Wertebereich ist hierbei eingeschrénkt durch [2,100] C N. Die untere Schranke
wurde auf den Wert zwei beschréankt, damit Stromungslinien bei der Umrech-
nung nicht degenerieren kénnen. Die obere Schranke ist auf den Wert 100
gesetzt worden, da sich experimentell gezeigt hat, dass eine weitere Erhohung
nicht zu einer Verbesserung des Ergebnisses fiihrt.

Weiterhin gibt es einen Fortschrittsbalken (4), der einen Indikator fir die
Berechnungsdauer des Algorithmus darstellt. Dieser kann fiir den Nutzer hilf-
reich sein, da die Berechnung in Abhéngigkeit von der maximalen Anzahl an
Stromungslinien, den Parametern (1) und (3), sowie der Leistung des aus-
fithrenden Systems, einige Zeit in Anspruch nehmen kann. So kann besser ein-
geschitzt werden, ob eventuell ungiinstige Konfigurationen der oben genannten
Parameter vorgenommen wurden. Parameter (1) ist dabei ausschlaggebend, da
sich bei der Einstellung 0.00, die Laufzeitkomplexitét stark verschlechtert (sie-
he Abschnitt .

Startet man darauthin die Berechnung der Stromungslinien mit der erstell-
ten Konfiguration, dann sind zunéchst keine Biindel vorhanden, die visualisiert
werden konnen. Aus diesem Grund wird im Streamline Renderer3D-Prozessor
(sieche Abbildung die Option (5) deaktiviert. Dadurch wird implizit die
Stromungsliniendarstellung gewéhlt. Sollte die Berechnung allerdings abge-
schlossen und Biindel gefunden worden sein, so wird die Option aktiviert und
der Benutzer kann zwischen den, im vorangegangenen Abschnitt erkldrten,
Darstellungsmaoglichkeiten wéhlen (6).
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In dieser Arbeit wurde der QuickBundles-Algorithmus implementiert und in
das Framework Voreen integriert. Dieser kann die zuvor berechneten Strom-
ungslinien in sehr kurzer Zeit in Biindel iiberfithren und somit Stréme sichtbar
machen, die zuvor aufgrund der grofien Anzahl an ungeordneten Stromungs-
linien nicht sichtbar wéren. Geht man von einem geeigneten Datensatz aus,
erzielt der Algorithmus iiberzeugende Ergebnisse.

Diese werden in anschaulicher Art und Weise durch verschiedene Darstel-
lungsmoglichkeiten der Centroids visualisiert. Dabei kann zur Zeit zwischen
Linien-, Zylinder- oder Pfeildarstellung gewéhlt werden, die jede fiir sich si-
tuationsabhéngig einen Wahrnehmungsvorteil im Vergleich zu der puren Stro-
mungsliniendarstellung bieten kann. Die eingangs erwahnte Eignung des Da-
tensatzes ist jedoch ein limitierender Faktor fiir das Ergebnis des Algorithmus.
Dessen Anwendung ist nicht sinnvoll, wenn der zugrundeliegende Datensatz
aus vielen, kurzen Stromungslinien besteht. Ist deren Linge jedoch moglichst
ausgedehnt, d. h. diese durchziehen beispielsweise ein Gefafl der Lange nach,
dann ist ein zufriedenstellendes Ergebnis sehr wahrscheinlich. Hier kommt zum
Tragen, dass der Algorithmus mit sehr wenigen Parametern auskommt. Von
diesen ist im Wesentlichen nur der Schwellwert fiir die zugrundeliegende MDF-
Metrik fiir das Ergebnis von signifikanter Bedeutung. Der Anwender muss je-
doch abhéngig vom Datensatz und seinen Erwartungen entscheiden, ob er einen
hohen oder einen niedrigen Schwellwert wéhlt. Die erste Option fithrt dabei zu
wenigen Biindeln aber kann zu einem groferen Fehler in der Ubereinstimmung
zu tatséchlich vorhandenen Stromungen fiihren. Letztere reduziert dagegen
den Fehler, fithrt aber zu mehreren Biindeln.

An diesem Punkt lidsst sich Potential fiir Automatisierung und Verbesse-
rung festhalten. So lassen sich sinnvolle Voreinstellungen der Parameter fiir
einen Datensatz bestimmen. Fiir die ,Streamline Resample Size® ldsst sich
feststellen, wie gekriimmt die Stromungslinien im Datensatz sind, d. h. wie
grofl der Winkel zwischen zwei Richtungsvektoren aufeinanderfolgender Ele-
mente durchschnittlich oder maximal ist. Der Schwellwert fiir das Kategorisie-
ren eines Biindels als Rauschen konnte durch eine statistische Auswertung aller
gefundenen Biindel ermittelt werden. Diese Automatisierungen erfolgen jedoch
auf Kosten der Laufzeit, wodurch deren Umsetzung zur Zeit nicht sinnvoll er-
scheint. Durch die technologische Entwicklung oder die Parallelisierung der
Prozesse konnte dies jedoch eine ernstzunehmende Verbesserungsmoglichkeit
darstellen.

Das automatisierte Bestimmen des bereits erwéhnten Schwellwerts fiir die
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5 Fazit und Ausblick

MDF-Metrik erfordert jedoch eine intelligente Analyse des kompletten Daten-
satzes, womit die Anwendung des QuickBundles-Algorithmus hinfillig werden
wiirde. Die Einstellung dieses Wertes bleibt somit dem Anwender iiberlassen.

Eine weitere Verbesserungsmoglichkeit findet sich in der Bestimmung des
Radius in der Zylinder- und Pfeildarstellung. Dieser wird momentan durch
eine sehr grobe Approximation ermittelt. Hier sollte von einem einheitlichen
Radius Abstand genommen und algorithmisch eine konvexe Hiille iiber die
Stromungslinien eines Biindels berechnet werden, sodass die rdumliche Aus-
dehnung einer Stromung exakt visualisiert werden kann. Die Lange der Pfeile
sollte von der Kriimmung der Stromungslinien abhéngen, sodass in stark ge-
kriimmten Regionen der durch das Uberspringen von Elementen entstehende
Fehler geringer ausfillt. Zudem wiirde beispielsweise ein Phong-Shading [6] die
rdumliche Wahrnehmung bei der Pfeildarstellung stark verbessern.
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