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1 Einleitung

In der medizinischen Forschung beschäftigt man sich mit der Analyse von
Strömungen, zum Beispiel bei der Untersuchung von Krankheiten des kardio-
vaskulären Systems. Mittels geeigneter Aufnahmetechnik, in diesem Fall dem
4D-Phasenkontrast-MR (4D PC MRI), wird dabei ein Bereich dieses Systems
gescannt, um Strömungen in diesem genauer untersuchen zu können [2].

Dabei wird meist die Trajektorie eines Teilchens in einer Flüssigkeit oder in
einem Gas betrachtet. Um allerdings Strömungen ausfindig zu machen, bedarf
es meist mehrerer solcher Trajektorien, die einen ähnlichen Verlauf aufweisen.
Ähnlichkeit ist hierbei beispielsweise durch räumliche Nähe oder Strömungs-
richtung definierbar.

In der Forschung genutzte Datensätze enthalten meist an jedem Messpunkt
im dreidimensionalen Raum mindestens die lokale Strömungsrichtung und Ge-
schwindigkeit. Daraus lassen sich Trajektorien diskretisiert durch Strömungs-
linien (im Folgenden auch Streamlines) berechnen, mit denen die weitere Ana-
lyse durchgeführt wird.

Eine rein mathematische Auswertung ist dabei meist wenig intuitiv, weshalb
man sich einiger Methoden der Visualisierung bedienen kann. Eine häufig an-
gewendete Möglichkeit besteht darin, die Strömungslinien dreidimensional zu
visualisieren. Die so erhaltene Ausgabe kann dabei bei einem entsprechenden
Datensatz schwierig oder gar nicht verwertbar sein, da Rauschen und die teil-
weise chaotische Anordnung der Strömungslinien eventuell vorhandene Struk-
turen verstecken.

Thema dieser Arbeit wird sein, diese Art der Visualisierung durch das au-
tomatische Detektieren von Strömungen und das Filtern von Rauschen unter
Verwendung des QuickBundles-Algorithmus stark zu vereinfachen, sodass eine
initiale, visuelle Analyse schnell durchgeführt werden kann. An einer solchen
Auswertung ist man vor allem im medizinischen Umfeld interessiert, wenn es
um eine schnelle und einfache Diagnose geht. Als Beispiel sei ein Aneurysma
genannt, dessen mögliche Existenz für eine rechtzeitige Behandlung umgehend
bestätigt werden muss.

Als Grundlage für die Arbeit wird das Framework Voreen (Volume Rende-
ring Engine) dienen, welches von der Arbeitsgruppe Visualisierung und Com-
putergrafik (VisCG) an der Universität Münster entwickelt wird [5]. Dieses
ist bereits dazu in der Lage, entsprechende volumetrische Datensätze zu laden
und daraus mit dem klassischen Runge-Kutta-Verfahren Strömungslinien zu
berechnen und diese in einfacher Form zu visualisieren. Voreen wird bereits im
medizinischen Umfeld genutzt [2].
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1 Einleitung

Die Arbeit besteht also im wesentlichen aus zwei Teilen. Zum einen müssen
die vom Framework berechneten Strömungslinien möglichst automatisiert ge-
bündelt und gefiltert werden, zum anderen muss das Resultat in eine visuelle
Darstellung überführt werden, beispielhaft zu sehen in Abbildung 1.1. Dafür
wird eine intuitive Benutzerschnittstelle geschaffen, die eine einfache Anpas-
sung der erhaltenen Darstellung erlaubt und sich an vorhandene Konzepte in
Voreen anlehnt.

Als Anwendungsfall dient die Forschung von Philipp Rene Bovenkamp, der
für die Evaluation des Algorithmus Datensätze verschiedener Komplexität zur
Verfügung stellt.

(a) Vor dem Bündeln und Filtern:
5000 Strömungslinien. Der Verlauf der
Strömungen ist nur schwierig zu erkennen.

(b) Nach dem Bündeln und Filtern: 16
Bündel. Der Verlauf der Strömung und de-
ren Richtung ist klar zu erkennen.

Abbildung 1.1: Zu sehen sind zwei Darstellungsmöglichkeiten eines Phantom-
Datensatzes (siehe Abschnitt 2.1), bei dem eine Schraube in
den Strom der Flüssigkeit gesetzt wurde, die eine helixförmige
Strömung erzeugt.
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2 Grundlagen

Um die in dieser Arbeit verwendeten Algorithmen besser nachzuvollziehen,
werden zunächst einige Grundlagen erklärt und diskutiert. Neben einem Über-
blick über die Methodik zur Erstellung der Datensätze gibt es eine Einführung
in das Framework Voreen, um dessen Verarbeitung der Daten ebenfalls mög-
lichst gut nachvollziehen zu können.

2.1 Verwendete Datensätze

Die im Rahmen dieser Arbeit betrachteten Datensätze sind volumetrisch und
enthalten an jedem Messpunkt die Geschwindigkeit und Richtung der dort
gemessenen Strömung. Zudem ist die Information enthalten, wie groß der Ab-
stand zwischen je zwei Messpunkten ist (in mm). Diese Information ist für die
weitere Arbeit mit dem Datensatz von Bedeutung, da sich arbiträre Einheiten
für die Konfiguration der Parameter der verwendeten Algorithmen deutlich
weniger gut eignen, als gebräuchliche Einheiten. Das Programm bzw. der Al-
gorithmus soll schließlich von Benutzern bedient und konfiguriert werden, die
keine Kenntnisse über den zugrundeliegenden Algorithmus besitzen, hingegen
jedoch über den verwendeten Datensatz.

Die Datensätze werden mittels 4D-Phasenkontrast-MR (4D PC MRI) er-
stellt [2]. Dabei wird zwischen sogenannten

”
in vitro“ und

”
in vivo“-Messungen

unterschieden. Ersteres bezeichnet das Erfassen von Daten an künstlich herge-
stellten Objekten, sogenannten Phantomen (zu sehen in Abbildung 2.1). Diese
lassen sich in reine Testobjekte und Nachbildungen eines biologischen Objek-
tes differenzieren. Ein Zylinder aus Acrylglas, wie in Abbildung 2.1(a) zu se-
hen, ist ein solches Testobjekt. Er kann mit verschiedenen Aufsätzen bestückt
werden, die verschiedene Formen von Verwirbelungen erzeugen, wenn man ei-
ne Flüssigkeit hindurch leitet, dessen Messungen dann ausgewertet werden
können. Möchte man konkreter die Strömungen innerhalb eines biologischen
Objektes analysieren, ohne am lebenden Objekt messen zu müssen, so bil-
det man entsprechende Regionen am Computer nach. Das so erhaltene Mo-
dell wird dann mit einem 3D-Drucker erstellt und ist bereits sehr gut mit
seinem Original in Bezug auf das Strömungsverhalten vergleichbar [1]. Den-
noch wird der 3D-Druck erneut mithilfe von Flüssiglatex nachgebildet, um das
Strömungsverhalten insbesondere an den Gefäßwänden exakter nachempfin-
den zu können. Eine so erstellte Nachbildung eines Aneurysmas ist in Abbil-
dung 2.1(b) zu sehen. Solche Phantome werden genutzt, um neue Methoden
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2 Grundlagen

(a) Ein Zylinder aus Acrylglas, der von einer Flüssigkeit durchströmt werden kann [2]

(b) Die Nachbildung eines Aneurysmas, erstellt mittels eines Nachgusses aus
Flüssiglatex eines 3D-Drucks, von Philipp Rene Bovenkamp

Abbildung 2.1: Zwei verschiedene Phantome zur Durchführung von
”
in vitro“-

Messungen, durch die Flüssigkeit geleitet wird. Daneben jeweils
die Visualisierung des durch 4D PC MRI erhaltenen Datensatzes
in Voreen, mit richtungsbasierter Farbkodierung (siehe Abschnitt
2.4).

erforschen und bekannte verbessern zu können, ohne auf lebende Objekte an-
gewiesen sein zu müssen. Letzteres ist meist deutlich aufwendiger und teurer,
sowie ethisch fraglich. Daher wird eine Methode erst anhand dieser Phantome
erprobt und validiert.

Führt man eine sogenannte
”
in vivo“-Messung am lebenden Objekt durch,

beispielsweise an einer Maus, beschränkt man sich meist auf eine bestimmte
Region. Im folgenden Beispiel wurde die Herzregion gewählt, zu sehen wei-
ter unten in Abbildung 2.4. Die Maus wurde für die Zeit der etwa einein-
halbstündigen Messung narkotisiert und ihr Herzschlag dabei konstant ge-
halten [2]. Die bei den Messungen erhaltenen Daten werden getrennt nach
räumlicher Dimension, sowie Meta-Informationen, wie etwa dem Abstand der
Messpunkte, hinterlegt, sodass ein Datensatz letztlich aus mehreren Dateien
besteht.
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2.2 Definition einer Strömungslinie

Im Folgenden wird ein solcher Datensatz jedoch mathematisch erfasst durch
eine vektorielle Funktion

f : R3 → R3,

welche jedem Punkt im Datensatz einen Richtungsvektor zuordnet, dessen Ma-
gnitude die Geschwindigkeit der Strömung am eingegebenen Datenpunkt an-
gibt. Alle übrigen Informationen, wie der Abstand der Messpunkte, werden
der Einfachheit halber als konstant über alle Datensätze angenommen.

(a) Strömungslinien im zweidimensionalen
Vektorfeld

(b) eine diskretisierte Strömungslinie

Abbildung 2.2: Links sind zwei Strömungslinien (rot und grün) in einem zweidi-
mensionalen Vektorfeld zu sehen. Die Pfeile geben die Richtung
an ausgewählten Punkten im Feld an, wobei die Länge ihre Ma-
gnitude repräsentiert. Rechts ist schematisch eine diskretisierte
Strömungslinie bestehend aus fünf Elementen skizziert. Die blauen
Pfeile markieren die Ortsvektoren der einzelnen Elemente, die ro-
ten repräsentieren deren Richtungsvektoren. Die Länge der Rich-
tungsvektoren muss dabei nicht der Länge der Segmente entspre-
chen, die je zwei Elemente miteinander verbinden. Der schwarze
Pfad repräsentiert die Zusammengehörigkeit der Elemente.

2.2 Definition einer Strömungslinie

Mit Strömungslinien bezeichnet man im allgemeinen Kurven in einem Ge-
schwindigkeitsfeld, deren Tangentenrichtung an jedem Punkt mit den Richtun-
gen der Geschwindigkeitsvektoren im Feld übereinstimmen (zu sehen in Abbil-
dung 2.2(a)) [7, 11]. Damit können sie eine geometrische Vereinfachung einer
Strömung innerhalb eines solchen Datensatzes darstellen und repräsentieren
somit eine Diskretisierung eines beliebig genauen Datensatzes. Eine weitere
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2 Grundlagen

Eigenschaft ist, dass sich zwei Strömungslinien in keinem Punkt schneiden
können, da in einem Punkt des Geschwindigkeitsfeldes nicht zwei verschiedene
Geschwindigkeiten herrschen können. Eine solche Strömungslinie sei nun de-
finiert über eine vektorielle Funktion s′ : [0, 1] ⊂ R → R3, wobei die Stelle 0
den Beginn und der Wert 1 das Ende der Strömungslinie s′ im Raum definiert.
In der Theorie sind diese Strömungslinien also mathematische Funktionen und
weisen daher auch eine beliebige Genauigkeit auf. Im Rahmen dieser Arbeit
wird diese Funktion jedoch numerisch ermittelt, was eine weitere Diskretisie-
rung entlang der Strömungslinie zur Folge hat (siehe Kapitel 3.1).

Diese Diskretisierung ist nicht zuletzt für die Visualisierung unabdingbar, da
diese nur mit endlicher Genauigkeit durchgeführt werden kann. Zudem lassen
sich die Informationen, die eine solche Strömungslinie beschreiben, von ihrem
Startpunkt im dazugehörigen Datensatz ausgehend, linearisiert abspeichern.
Dies vereinfacht die Weiterverarbeitung der Daten und ist schlussendlich erfor-
derlich wegen der Arbeitsweise der verwendeten Algorithmen in dieser Arbeit.

Eine solche, diskretisierte Strömungslinie s (zu sehen in Abbildung 2.2(b))
bestehend aus k ∈ N Elementen, ist im Folgenden definiert durch eine k×3 Ma-
trix, wobei die drei Elemente jeder Zeile die Position im Raum beschreiben und
die erste Zeile somit die Position des ersten Elements in Strömungsrichtung.
Die Schreibweise s = [r1, r2, . . . , rk] erlaubt im Folgenden eine bei 1 begin-
nende, indizierte Referenzierung der Elemente. Da Strömungslinien immer in
Kombination eines Geschwindigkeitsfeldes berechnet werden, ist die lokale Ge-
schwindigkeit nicht Bestandteil der Definition, sondern ist durch den Funkti-
onswert der Funktion f (siehe vorangegangener Abschnitt) an der Position des
entsprechenden Elements gegeben, d. h. vi = f(ri), i = 1, . . . , k.

2.3 Definition eines Bündels

Ein wesentlicher Bestandteil dieser Arbeit ist das Bündeln von Strömungslinien.
In der Literatur [3] ist ein solches Bündel definiert durch ein Tripel c = (I, h, n),
wobei im Folgenden jedes Element mit dem ◦-Operator referenziert werden
kann. Hierbei ist I eine Liste, die alle Indizes der im Bündel enthaltenen
Strömungslinien si enthält, n ist deren Anzahl und h deren Aufsummierung,
d.h. h =

∑k
i=1 si, wobei die Summe

∑
hier die Matrixaddition repräsentiert.

Diese kann natürlich nur durchgeführt werden, wenn die Dimensionen der Ma-
trizen identisch sind, also die Strömungslinien dieselbe Anzahl an Elementen
haben. Dieses Problem wird durch Resampling mittels linearer Interpolation
gelöst, was in Kapitel 3 beschrieben wird. Die Listen I verschiedener Bündel
sind disjunkt, da die Zugehörigkeit einer Strömungslinie zu einem Bündel ein-
deutig ist. Ein weiterer wichtiger Begriff ist der Centroid. Dies ist die re-
präsentative Strömungslinie v eines Bündels und wird ausgehend vom Tripel c
berechnet durch v = c ◦ h/c ◦ n, wobei hier die übliche Matrix-Skalar-Division
gemeint ist.
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2.4 Das Voreen-Framework

2.4 Das Voreen-Framework

Voreen (Volume Rendering Engine) ist ein Framework zur Visualisierung me-
dizinischer Volumendaten, welches von der Arbeitsgruppe Visualisierung und
Computergrafik (VisCG) an der Universität Münster entwickelt wird [5].

Das Framework ist modular aufgebaut, sodass dessen tatsächliche Funk-
tionalität frei konfigurierbar ist und basiert auf der Programmiersprache C++
und der OpenGL-API [9]. Im Rahmen dieser Arbeit wird der Fokus im Wesent-
lichen auf die Module Flowreen, welches Algorithmen zur Fluss-Visualisierung
enthält und Bovenkamp, benannt nach Philipp Rene Bovenkamp, welches das
Einladen eines von ihm entwickelten Dateiformats unterstützt, gelegt.

(a) Beispielnetzwerk mit dessen Ausgabe
im dazugehörigen Canvas

(b) Beispielnetzwerk im Modus zum Kon-
figurieren der

”
Property-Links“, sowie die

Einstellsmöglichkeiten zweier Prozessoren
(blau markiert)

Abbildung 2.3: Zu sehen ist ein simples Beispielnetzwerk in Voreen. Die linke
Abbildung zeigt die Ausgabe des Bilddatenflusses, welcher über
die blauen Ports übertragen und durch Übermitteln der Daten
in den Canvas-Prozessor dargestellt wird. Die rechte Abbildung
zeigt dasselbe Netzwerk mit dessen

”
Property-Links“. Die Blöcke

sind die Prozessoren, welche ihre Daten über die Verbindungen
(dunkle Pfeile) miteinander austauschen. Die hellgrauen Verbin-
dungen sind die

”
Property-Links“, über welche z.B. die Ausrich-

tung der Kamera zwischen den Prozessoren synchronisiert werden
kann.

2.4.1 Workflow und dessen Komponenten

In Voreen wird der Datenfluss über ein Netzwerk abgewickelt. Dieses Netzwerk
besteht aus Prozessoren, welche miteinander verbunden werden können. Jeder
Prozessor stellt einen Knoten im Netzwerk dar, welcher je nach Funktiona-
lität externe Daten einlesen, neue generieren, eingehende manipulieren oder
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2 Grundlagen

visualisieren kann. Jeder Prozessor besitzt mehrere Einstellungsmöglichkeiten
und Ports, über welche die Prozessoren untereinander verbunden sind. Dabei
sind die Einstellungsmöglichkeiten über sogenannte

”
Property-Links“ mitein-

ander verbunden, damit beispielsweise die Ausrichtung der Kamera in allen
Prozessoren synchronisiert ist (zu sehen in Abbildung 2.3). Über die Ports
wird der Datenaustausch eingeschränkt und gesteuert. Es wird unterschieden
zwischen eingehenden und ausgehenden Ports, womit die Datenflussrichtung
im Netzwerk definiert wird. Dabei sind die eingehenden Ports im Allgemeinen
an der Oberseite und ausgehende an der Unterseite eines Prozessors ange-
bracht, wodurch der Datenfluss von oben nach unten verläuft. Jeder Port ist
dazu in der Lage, eine fest definierte Datenstruktur entgegenzunehmen und
an den Prozessor weiterzugeben, wodurch die Verbindungsmöglichkeiten zwi-
schen den Prozessoren festgelegt werden. Dabei wird jede Datenstruktur durch
eine unterschiedliche Farbe des übertragenden Ports dargestellt. Der Zustand
eines Datenpakets, welches durch das Netzwerk geschickt wird, lässt sich an je-
dem Port einsehen, sodass der Datenfluss transparent ist. Eine besondere Rolle
nimmt dabei der Canvas-Prozessor ein. Dieser kann das Ende des Bilddaten-
flusses definieren, da er keine ausgehenden Ports besitzt. Seine wesentliche
Funktionalität besteht darin, die eingehenden Bilddaten anzuzeigen, weshalb
er Bestandteil von nahezu jedem Netzwerk ist.

Mithilfe dieses Netzwerkkonzepts und einer gewissen Auswahl von grundsätz-
lich mitgelieferten Prozessoren, die unterschiedlichste Aufgaben erfüllen, las-
sen sich schnell Visualisierungen verschiedenster Datensätze erstellen. Voreen
ist damit ein Rapid-Prototyping-Framework [5]. Die Funktionalität ist dabei
durch viele verfügbare Module frei erweiterbar. Jedes dieser Module fügt neue
Prozessoren hinzu, die mit den vorhandenen verbunden werden können und
so das Netzwerk erweitern. Des Weiteren werden alle Informationen über ein
Netzwerk und die Konfiguration der einzelnen Prozessoren in einem Workspace
gespeichert. Diese dienen der Persistierung des Zustandes der Anwendung mit-
tels der Speicherung in einem, auf XML basierten und für den Menschen les-
baren VWS-File (Voreen Workspace). Nach dem Wiedereinladen in Voreen ist
das Weiterarbeiten an genau dem Punkt der Speicherung möglich, beispielswei-
se mit den gleichen Fenster- und Kamerapositionen. Auf diese Weise können
zudem verschiedene Applikationen, wie im folgenden Abschnitt beschrieben,
bereitgestellt und weiterentwickelt werden.

2.4.2 Das Flowreen Modul

Flowreen ist ein Modul von Voreen, welches Funktionalitäten zur Visualisie-
rung von Strömungen bietet. Es liefert dafür eigene Datenstrukturen und Pro-
zessoren, die im Rahmen dieser Arbeit verwendet und erweitert werden. Die
Kernfunktionalität besteht dabei in der Erzeugung von Strömungslinien aus ei-
nem volumetrischen Datensatz (siehe Abschnitt 2.1) sowie deren Visualisierung
und Export. Die Prozessoren, die diese Arbeit übernehmen, sind der Streamli-
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2.4 Das Voreen-Framework

(a) Richtungsbasierte Farbkodierung (b) Geschwindigkeitsbasierte Farbkodierung
(Werte geben die Geschwindigkeit in % re-
lativ zum höchsten Messwert im Datensatz
an)

Abbildung 2.4: Die verschiedenen Möglichkeiten der farblichen Visualisierung von
Strömungslinien, verdeutlicht anhand des Herzens einer Maus.

neCreator, StreamlineRenderer3D und StreamlineSave. Die Prozessoren lassen
sich direkt miteinander verbinden, sodass die erstellten Strömungslinien ohne
Umwege visualisiert und exportiert werden können.

Weiterhin existiert ein Prozessor zum Filtern der erstellten Datensätze, den
StreamlineSelector. Dieser erlaubt anhand mehrerer Einstellungsmöglichkeiten
eine Auswahl der eingehenden Strömungslinien vorzunehmen, wie etwa durch
das Entfernen derer, die sich nicht innerhalb einer selbstdefinierten Box (Re-
gion Of Interest) befinden. Unabhängig von dieser Filterung lassen sich Strö-
mungslinien mittels des StreamlineRenderer3D-Prozessors in Form von farb-
kodierten Linien visualisieren. Es kann dabei zwischen einer richtungsbasier-
ten (Abbildung 2.4(a)) und einer geschwindigkeitsbasierten (Abbildung 2.4(b))
Farbkodierung gewählt werden. Die Interpretation des Farbwertes kann dabei
anhand des entsprechenden Overlays abgelesen werden, zu sehen jeweils rechts
unten in den Abbildungen. Der Export kann sowohl in ein Voreen-eigenes Da-
teiformat, als auch in eine CSV-Datei (Comma Separated Value) erfolgen.

2.4.3 Das Bovenkamp Modul

Für Philipp Rene Bovenkamp, dessen Forschung auf dem Gebiet der Strö-
mungsanalyse im medizinischen Umfeld diese Arbeit unterstützen soll, wurde
von der Arbeitsgruppe Visualisierung und Computergrafik (VisCG) ein ei-
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2 Grundlagen

Abbildung 2.5: Netzwerk des Create-Workspaces

genes Modul entwickelt. Dieses hat die Aufgabe, die von ihm mit externer
Software erstellten Datensätze einlesen und bearbeiten zu können. Für die-
sen Zweck enthält es den Create-, Select- und den Render -Workspace, wel-
che drei verschiedene Anwendungsbereiche abdecken. Ersterer beinhaltet die
Funktionalität zum Einladen der genannten Datensätze und zum Erstellen der
Strömungslinien, welche zugleich visualisiert und exportiert werden können.
Der Select-Workspace erlaubt das Nachbearbeiten eines so erstellten Daten-
satzes durch die Selektion von Strömungslinien in bestimmten Bereichen, wobei
der Render -Workspace hingegen lediglich die Möglichkeit bietet, einen belie-
bigen Strömungsliniendatensatz beispielsweise für Demonstrationszwecke zu
visualisieren.

Der Create-Workspace (siehe Abbildung 2.5) enthält im Wesentlichen die
Funktionalität der beiden anderen Workspaces, weshalb er im Folgenden re-
präsentativ genauer betrachtet wird. Er bietet zunächst die Möglichkeit, einen
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2.4 Das Voreen-Framework

(a) Eine ausgewählte Region innerhalb eines Datensatzes, sowie die enthaltenen
Strömungslinien vor (links) und nach (rechts) der Selektion

(b) drei orthogonale Schnitte durch einen Datensatz

Abbildung 2.6: Verschiedene Funktionalitäten, bereitgestellt durch das Boven-
kamp Modul.

entsprechenden Volumendatensatz (siehe Abschnitt 2.1) einzuladen (markiert
in rot). Bei den beiden anderen Workspaces wird an dieser Stelle hingegen
ein Strömungsliniendatensatz eingeladen, dessen Herkunft im Folgenden er-
klärt wird. Die Daten werden nun an mehreren Stellen für unterschiedliche
Zwecke ausgewertet. Das Erstellen von Strömungslinien aus dem Datensatz
(markiert in grün) ist dabei die diesen Workspace auszeichnende Funktiona-
lität und ist in den beiden anderen nicht enthalten. Im Select-Workspace wird
dagegen durch sogenannte StreamlineSelector -Prozessoren das Selektieren von
Strömungslinien ermöglicht, wie im vorangegangenen Abschnitt erklärt (siehe
Abbildung 2.6(a)). Die erstellten Strömungslinien können daraufhin optional
im Raum rotiert (markiert in hellblau) und visualisiert werden (markiert in
orange). Letzteres wird dabei unterstützt durch die Darstellung von sogenann-
ten Schnitten durch den Datensatz, sowie von diversen Overlays zum Ermit-
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2 Grundlagen

teln seiner Ausrichtung, Größe und Farbkodierung (siehe Abbildung 2.6(b)).
Zum einen gibt es die Möglichkeit einen beliebigen, vom Benutzer festgeleg-
ten Schnitt durch den Datensatz darzustellen (markiert in dunkelblau), zum
anderen können drei paarweise orthogonale Schnitte gerendert werden, wel-
che die Orientierung im Datensatz erleichtern sollen (markiert in gelb). All
diese Darstellungen werden letztlich zu einem Bild zusammengefügt (mar-
kiert in lila) und können durch einen Canvas-Prozessor ausgegeben werden.
Zusammenfassend lässt sich die Idee hinter den Workspaces mit folgendem
Workflow festhalten. Ein Volumendatensatz wird mit dem Create-Workspace
eingeladen und daraus mit den beschriebenen Visualisierungsmöglichkeiten
ein Strömungsliniendatensatz erstellt. Dieser wird exportiert und im Select-
Workspace importiert, wo enthaltene Strömungslinien weiter aussortiert wer-
den. Der so aufbereitete Datensatz wird erneut exportiert und im Render -
Workspace importiert. Dort werden die Strömungslinien zusammen mit drei
orthogonalen Schnitten, beispielsweise zu Demonstrationszwecken, visualisiert.
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3 Algorithmen

In diesem Kapitel wird das automatisierte Gruppieren von Strömungslinien
algorithmisch erfasst. Dafür wird kurz die Funktionsweise des vorgelagerten
Runge-Kutta-Verfahrens erläutert, welches die Eingabedaten des QuickBundles-
Algorithmus liefert. Im Anschluss dieses Kapitels wird dann auf die Implemen-
tierung und Integration dieser Algorithmen in Voreen eingegangen.

3.1 Finden von Strömungslinien (Runge-Kutta)

Das Finden von Strömungslinien erfolgt unter Berücksichtigung mehrerer dy-
namisch festlegbarer Parameter mittels des klassischen Runge-Kutta-Verfahr-
ens [8], welches im Modul Flowreen (siehe Abschnitt 2.4.2) implementiert ist.

Dafür werden unter Verwendung eines Zufallszahlengenerators innerhalb des
Volumendatensatzes Positionen bestimmt, die als Startpunkte für die Berech-
nung der Strömungslinien verwendet werden.

Sei f : R3 → R3 die Funktion, welche zu jedem Punkt des Datensatzes die
lokale Geschwindigkeit liefert (siehe Abschnitt 2.1), dann berechnet sich ein
Element ri der Strömungslinie, ausgehend vom Startpunkt r0 unter Verwen-
dung der Schrittweite h durch

ri+1 = ri + k1
6 + k2

3 + k3
3 + k4

6

mit

k1 = f̂(ri) · h,

k2 = f̂(ri + k1
2 ) · h,

k3 = f̂(ri + k2
2 ) · h,

k4 = f̂(ri + k3) · h,

wobei f̂ die benötigte Normalisierung von f denotiert.

Von den zufällig bestimmten Startpunkten ausgehend wird nachfolgend nu-
merisch mit dem genannten Verfahren in und entgegen der lokalen Strömungs-
richtung der Datensatz traversiert, bis ein Abbruchkriterium eintritt. Dies ist
der Fall, wenn die Grenzen des Datensatzes erreicht wurden oder die Geschwin-
digkeit der lokalen Strömung den eingestellten Schwellwert über- oder unter-
schreitet.
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Algorithm 1 Modifizierter QuickBundles-Algorithmus [3]

Input: S = [s1, . . . , si, . . . , sn], ε // Liste von Strömungslinien und Schwell-
wert

Output: C = [c1, . . . , ci, . . . , cm] // Liste von Bündeln
1: C ← empty // Zu Beginn gibt es keine Bündel
2: for i = 1, . . . , n do
3: t← resampled(si) // Resampling der Strömungslinie
4: dmin ←∞
5: l← 0
6: m← length(C)
7: for j = 1, . . . ,m do
8: v ← cj ◦h/cj ◦n // Berechnung des Centroids des jten Bündels
9: d← dMDF (v, t) // Berechne die MDF-Distanz zwischen v und t

10: if d < dmin then
11: dmin ← d // Aktualisiere minimale Distanz
12: l← j // Aktualisiere dazugehörigen Index
13: end if
14: end for
15: if dmin < ε then
16: cl ◦h← cl ◦h+ t // Aktualisiere die Summe der Strömungslinien

17: cl ◦n← cl ◦n+ 1 // Aktualisiere die Anzahl der Strömungslinien

18: append(Cl ◦ I, i) // Füge den Index in die Liste ein
19: else
20: cm+1 ← ([i], t, l) // Erstelle ein neues Bündel
21: append(C, cm+1) // Nimm es in die Liste aller Bündel auf
22: end if
23: end for
24: return C

3.2 Gruppieren von Strömungslinien
(QuickBundles)

Das Finden der Bündel wurde mittels einer modifizierten Version des Quick-
Bundle Algorithmus realisiert (siehe Algorithmus 1). Die Wahl fiel auf die-
sen, weil er im Vergleich zu anderen Gruppierungsalgorithmen wie k-means
[4] auf Geschwindigkeit und Speicherbedarf optimiert ist. Er kann zudem gut
mit sehr vielen Strömungslinien umgehen, da jede genau einmal betrachtet
wird. Der Algorithmus iteriert dabei über alle Strömungslinien und versucht
ein Bündel zu finden, dem er sie zuordnen kann. Das Entscheidungskriterium
dafür, ob die Zuordnung stattfinden kann, ist durch eine Metrik dMDF und
einen Schwellwert ε definiert (siehe folgender Unterabschnitt), wobei bei meh-
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3.2 Gruppieren von Strömungslinien (QuickBundles)

(a) direct Distanzen (b) direct-flipped Distanzen

Abbildung 3.1: Vergleich der verwendeten Metriken der MDF-Distanz.

reren möglichen Bündeln jenes mit geringstem Abstand gewählt wird (Zeilen
10-13). Bei erfolgter Zuordnung wird das entsprechende Bündel um die Infor-
mation ergänzt (Zeilen 16-18) und die nächste Strömungslinie wird betrachtet.
Sollte kein solches Bündel gefunden werden, wird ein neues angelegt, dessen
Centroid gerade der betrachteten Strömungslinie entspricht (Zeilen 20-21). Für
das Anwenden der Metrik ist jedoch zunächst das Resampling (Zeile 3) aller
Strömungslinien auf dieselbe Anzahl von Elementen erforderlich (siehe Ab-
schnitt 3.2.2). Der Algorithmus hat keine Aktualisierungsphase der Bündel:
wurde eine Strömungslinie einmal einem Bündel zugeordnet, bleibt die Zu-
ordnung bestehen. Durch diesen Ansatz begründet sich seine Geschwindigkeit
[3].

3.2.1 Abstand zwischen Strömungslinien (MDF)

Der QuickBundles - Algorithmus benötigt eine Funktion, die eine Distanz zwi-
schen zwei Strömungslinien berechnet. Diese Distanzfunktion ist in der Li-
teratur gegeben durch die

”
Minimum average direct-flip“-Distanz [3]. Diese

Distanzfunktion berücksichtigt, dass die einzelnen Elemente einer diskretisier-
ten Strömungslinien s = [r1, r2, . . . , rk] nicht in Richtung der Strömung ge-
speichert sein müssen, sondern auch in umgekehrter Reihenfolge, notiert als
sF = [rk, rk−1, . . . , r1]. Die folgende Metrik berechnet den durchschnittlichen
Abstand von zwei Strömungslinien unter paarweiser Betrachtung von je ei-
nem Punkt mit gleichem Index (siehe Abbildung 3.1(a)). Hierbei seien s, t
Strömungslinien mit je k ∈ N Elementen und |x − y| gebe die euklidische
Distanz zwischen zwei Punkten x, y ∈ R3 an.

ddirect(s, t) = 1
k

∑k
i=0 |r

(t)
i − r

(s)
i |
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3 Algorithmen

(a) Strömungslinie vor dem Resampling, be-
stehend aus sechs Elementen

(b) Strömungslinie nach dem Resampling auf
vier Elemente

Abbildung 3.2: Skizze des Resampling-Prozesses mit den betrachteten Elemente
und Abständen.

Die nachfolgende Metrik berechnet dieselbe Distanz wie die erste, jedoch ist
eine der beiden Strömungslinien gedreht, also die Anordnung der Elemente
vertauscht (siehe Abbildung 3.1(b)).

dflipped(s, t) = ddirect(s, t
F ) = ddirect(s

F , t)

Die MDF-Metrik berechnet das Minimum der beiden vorangegangen.

dMDF (s, t) = min(ddirect(s, t), dflipped(s, t))

Da der verwendete Runge-Kutta-Algorithmus die Anordnung der Elemente in
Strömungsrichtung garantiert, vereinfacht sich die Funktion zu:

dMDF (s, t) = ddirect(s, t)

Ferner kann diese Vereinfachung vorgenommen werden, da so Strömungslinien,
die in entgegengesetzte Richtung verlaufen, erst mit einem deutlich höheren
Schwellwert zusammengefasst werden, als wenn man die dflipped(s, t) Funktion
verwenden würde. Somit ist die benötigte Distanzfunktion durch die dMDF -
Metrik definiert. Diese lässt sich allerdings nur auf zwei Strömungslinien mit
gleicher Anzahl an Elementen anwenden, wodurch das, im folgenden Unterab-
schnitt erläuterte, Resampling notwendig wird.

3.2.2 Resampling

Der QuickBundles Algorithmus arbeitet mit Centroids (siehe Abschnitt 2.3).
Für deren Berechnung ist es erforderlich, dass alle im Bündel enthaltenen
Strömungslinien dieselbe Anzahl an Elementen besitzen. Zusätzlich ist es not-
wendig, dass die Abstände zwischen den Elementen je Strömungslinie identisch
sind, damit es keine Gewichtung zwischen den Elementen des Centroid gibt.
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3.2 Gruppieren von Strömungslinien (QuickBundles)

Aus diesem Grund muss jede Strömungslinie vor der Betrachtung geresam-
pled werden. Dabei werden Start- und Endpunkt beibehalten und die übrigen
Punkte per linearer Interpolation bestimmt. Gegeben sei eine Strömungslinie
s = [r1, r2, . . . , rn] mit n ∈ N Elementen. Diese soll auf k ∈ N≥2 Elemente
geresampled werden, also s′ = [r′1, r

′
2, . . . , r

′
k].

Zunächst wird der Abstand di eines jeden Elements ri, i = 1, 2, . . . , n zum
Startpunkt, also r1 bestimmt, wobei mit Abstand die Summe der vorangegan-
genen Segmentlängen gemeint ist:

di =
∑i

l=1 |rl+1 − rl|.
Dabei wird die Gesamtlänge lges von s zusätzlich bestimmt, sowie die neue, für
alle Segmente identische, Länge lseg:

lges = dn,

lseg =
lges
n−1 .

Nun wird für jedes neue Element r′j die Distanz d′j vom Startpunkt mit

d′j = j · lseg
berechnet, woraufhin der Index p zum Element r′j bestimmt wird, für den

dp ≤ d′j < dp+1

gilt. Dies lässt sich anhand von Abbildung 3.2 nachvollziehen. Jetzt kann der
Koeffizient t für die lineare Interpolation mit

t =
d′j−dp

dp+1−dp

berechnet werden. Schlussendlich ergibt sich nun die Position eines Elements
r′j mit linearer Interpolation:

r′j = rp · (1− t) + rp+1 · t.

3.2.3 Laufzeitanalyse

Für die Ermittlung der Laufzeitkomplexität werden zunächst die ins Gewicht
fallenden Parameter bestimmt. Zweifelsohne lässt sich die Anzahl der Ström-
ungslinien n als ein solcher festhalten, da große Datensätze je nach Genauigkeit
beliebig viele enthalten können. Die Anzahl der Bündel m ist für die Zuordnung
einer Strömungslinie entscheidend und kann je nach Parametrisierung durch ε
ebenfalls sehr groß werden, jedoch nicht größer als n. Der Einfluss von ε wird
daher implizit durchm ausgedrückt. Die maximale Anzahl l von Elemente einer
Strömungslinie vor dem Resampling ist ebenfalls stark von der Parametrisie-
rung und dem Datensatz abhängig. Die Anzahl von Elementen k nach dem
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Resampling kann im Allgemeinen sehr klein gewählt werden (Größenordnung
101) [3] und ist somit meistens kleiner, höchstens jedoch gleich l.

Die Laufzeit des Resamplings wird nun der Einfachheit halber gesondert
berechnet, da sie für alle betrachteten Fälle identisch ist. Sie ist gegeben durch

O(n · (l + k)) = O(n · l),

da je Strömungslinie die Distanzen zwischen allen aufeinanderfolgenden Ele-
menten, sowie die neuen Elemente berechnet werden müssen.

Betrachten wir nun die Laufzeit eines vollständigen Durchlaufs des Quick-
Bundles Algorithmus im bestmöglichen Fall. Dieser tritt ein, wenn die Anzahl
der Bündel minimal bleibt, also nach der Betrachtung der ersten Strömungslinie
immer genau ein Bündel existiert. Damit ist die Laufzeit maßgeblich durch die
Anzahl der Strömungslinien bestimmt, was zu einer Laufzeit von

O(n) +O(n · l) = O(n · l)

führt.
Im durchschnittlichen Fall findet sich deutlich mehr als ein Bündel, wodurch

sich die Laufzeit zu

O(n ·m) +O(n · l) = O(n · (m+ l))

verschlechtert. Da im Allgemeinen die Anzahl der Bündel jedoch deutlich klei-
ner ist, als die der Strömungslinien, d. h. m � n, kann die Laufzeit auch im
durchschnittlichen Fall durch

O(n) +O(n · l) = O(n · l)

angegeben werden [3].
Im schlechtesten Fall ist die Laufzeitkomplexität jedoch durch

O(n2) +O(n · l) = O(n2 + n · l)

anzugeben. Für ε = 0 degeneriert die Anzahl der Bündel zu m = n. Zu diesem
Resultat kommt es, da Strömungslinien sich nicht schneiden können (siehe
Abschnitt 2.2) und somit der durchschnittliche Abstand niemals den Wert 0
annimmt. Dies hat letztlich zur Folge, dass es für jede Strömungslinie genau ein
Bündel gibt, woraus durch die zwei verschachtelten Schleifen die quadratische
Laufzeit resultiert.

3.3 Anwendbarkeit von QuickBundles

Der QuickBundles-Algorithmus bietet ein gutes Verhältnis zwischen der Qua-
lität des Ergebnisses der Gruppierung und der dafür aufgewendeten Zeit, sowie
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dem benötigten Speicherplatz. [3]. Dafür müssen allerdings gewisse Vorausset-
zungen erfüllt werden.

Zum einen müssen vorhandene Strömungen durch mehrere Strömungslinien
repräsentiert werden, damit die Anwendung des Algorithmus überhaupt sinn-
voll ist. Ansonsten mangelt es an Referenz-Strömungslinien und er wird, je
nach der Wahl von ε, vermehrt auch solche zusammenfassen, die eigentlich
nicht zusammengehören. Außerdem sollte die Länge der Strömungslinien mög-
lichst maximal sein. Ist dies nicht der Fall, und eine Strömung besteht aus
ähnlichen Strömungslinien, die allerdings nur eine sehr kurze Distanz über
parallel verlaufen, so werden diese höchstwahrscheinlich nicht zusammenge-
fasst. Ist der Schwellwert dagegen groß genug, würde dies zu einer starken
Verkürzung an beiden Enden der erkannten Strömung führen, zu sehen in Ab-
bildung 3.3. Die Verkürzungen ∆x1 und ∆x2 werden signifikanter, je größer
der Schwellwert ist. Verringert man diesen hingegen, erhöht sich die Anzahl
der Bündel.

Bei einem ungeeigneten Datensatz von Strömungslinien gibt es somit einen
Trade-Off zwischen der Minimierung der Anzahl der Bündel und der Exakt-
heit der räumlichen Abdeckung einer Strömung. Für ein optimales Ergebnis
ist es daher notwendig, den Eingabedatensatz für den Algorithmus ebenfalls
möglichst optimal zu wählen.

Abbildung 3.3: Skizze zweier Strömungslinien (rot und blau), die zu einem Bündel
zusammengefasst werden (violett). Hier wird die Verkürzung der
repräsentierten Strömung an beiden Enden sichtbar (∆x1,∆x2),
die durch einen zu hoch eingestellten Schwellwert bei einem unge-
eigneten Datensatz entstehen kann.
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4 Implementierung von
QuickBundles

Das zentrale Ziel dieser Arbeit ist die Implementierung des in Abschnitt 3.2
vorgestellten QuickBundles-Algorithmus. Dieser soll in die bestehende Imple-
mentierung von Voreen eingearbeitet werden. Dafür ist es notwendig, beste-
hende Datenstrukturen und Prozessoren anzupassen, sowie neue zu ergänzen.
Ein besonderes Augenmerk wird dabei auf die Konsistenz zum vorhandenen
Quelltext sowie auf einen möglichst modularen Aufbau gelegt. In den folgen-
den Abschnitten werden die einzelnen Bestandteile der Implementierung im
Detail erklärt.

Die verwendete Programmiersprache ist C++. Dies ist im Wesentlichen
durch die Nutzung der Sprache in dem zu erweiternden Framework Voreen
begründet.

4.1 Integration in das Flowreen Modul

Der vorgestellte Algorithmus (siehe Abschnitt 3.2) wurde in das Modul Flowreen
(siehe Abschnitt 2.4.2) integriert. Insbesondere wurde auf eine inkrementelle
Implementierung Wert gelegt, damit die bestehende Funktionalitäten möglichst
unangetastet bleiben. Dieser Abschnitt beleuchtet die im Rahmen der Imple-
mentierung notwendig gewordenen Änderungen am vorhandenen Quelltext,
sowie dessen Ergänzungen.

4.1.1 Der Datenfluss

Der wesentliche Teil des Datenflusses vom Einladen eines Volumendatensatzes
(siehe Abschnitt 2.1) bis hin zum Visualisieren der Strömungslinien und Bündel
wird nun anhand des Klassendiagramms (siehe Abbildung 4.1) erläutert.

Nachdem ein Datensatz eingeladen wurde, startet der StreamlineCreator -
Prozessor einen Thread, hier StreamlineCreatorBackgroundThread, der im Hin-
tergrund der laufenden Anwendung mit dem Runge-Kutta-Verfahren Strö-
mungslinien (Streamline) berechnet. Diese werden in einer Datenstruktur (Stre-
amlineList) gespeichert, die vom StreamlineCreator -Prozessor verwaltet wird.
Die Streamlines werden nach Abschluss der Berechnung bereits über einen
entsprechenden Port (siehe Abschnitt 2.4) freigegeben, sodass ein angebunde-
ner StreamlineRenderer3D-Prozessor diese visualisieren kann. Im Hintergrund

21



4 Implementierung von QuickBundles

Abbildung 4.1: UML-Diagramm der wichtigsten Klassen. Der blaue Bereich bein-
haltet die veränderten, der rote die hinzugefügten Klassen.

wird in der Zwischenzeit vom StreamlineCreator -Prozessor ein neuer Hinter-
grundthread gestartet, hier StreamlineBundleDetectorBackgroundThread. Die-
ser führt den QuickBundles-Algorithmus auf den zuvor berechneten Streamli-
nes aus und speichert die gefundenen Bündel (StreamlineBundle) in derselben
StreamlineList-Datenstruktur, die auch die Streamlines speichert. An dieser
Stelle wird deutlich, warum eine Verwendung von Hintergrundthreads sinnvoll
ist. So lässt sich die Visualisierung der Strömungslinien bereits uneingeschränkt
betrachten, während die Berechnung der Bündel abläuft. Zudem können so die
Parameter auch jederzeit angepasst werden. Sollte die Berechnung noch nicht
abgeschlossen sein, wird sie abgebrochen und startet unmittelbar erneut, mit
der neuen Konfiguration.

Der QuickBundles-Algorithmus wurde noch um eine recht simple Rausch-
unterdrückung erweitert. Dafür wird ein weiterer Schwellwert definiert, der
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die Mindestanzahl an Strömungslinien innerhalb eines Bündels angibt. Nach
dem Durchlaufen des Algorithmus wird jedes Bündel erneut betrachtet und die
darin enthaltene Anzahl mit dem Schwellwert verglichen. Wird dieser unter-
schritten, so wird das Bündel verworfen und die enthaltenen Strömungslinien
als Rauschen klassifiziert. Dafür wurde die StreamlineList-Datenstruktur er-
weitert, sodass sie zu den enthaltenen Streamlines noch die gefundenen Stream-
lineBundles, sowie eine Liste speichert, welche die als Rauschen klassifizierten
Streamlines beinhaltet.

Dieser simple Ansatz ist effektiv, da bereits ein Schwellwert von einem Pro-
zent der Gesamtzahl der Strömungslinien das meiste Rauschen filtern kann,
was experimentell ermittelt wurde. Dennoch sollte der Algorithmus ohnehin
auf einem Datensatz operieren, der möglichst frei von Rauschen ist.

4.1.2 Formen der Visualisierung

Neben dem Gruppieren der Strömungslinien ist die Überführung der Bündel
in eine möglichst intuitive, visuelle Darstellung eine entscheidende Aufgabe.
Dafür wurden für unterschiedliche Anforderungen verschiedene Darstellungs-
möglichkeiten in den StreamlineRenderer3D-Prozessor integriert, welche die
vorhandene Strömungslinienvisualisierung ergänzen (siehe Abbildung 4.2(a)).
Der Benutzer kann zwischen einer Liniendarstellung, einer Zylinderdarstellung
und einer Pfeildarstellung wählen. Jede der Möglichkeiten basiert auf den Cen-
troids der Bündel (siehe Abschnitt 2.3) und stellt diese letztlich auf verschie-
dene Art und Weise dar.

Liniendarstellung: Die Liniendarstellung (siehe Abbildung 4.2(b)) enthält
minimale Informationen, d. h. lediglich über den räumlichen Verlauf des Cen-
troids eines Bündels und ist analog zu der Visualisierung der Strömungslinien
implementiert. Die Dicke der Linien wurde um den Faktor 3 angehoben, sodass
eine Unterscheidung zu Strömungslinien möglich wird. Dieser Faktor wurde
experimentell ermittelt und bietet einen guten Ausgleich zwischen Erkennbar-
keit und Linienform, in Relation zu der Zylinderdarstellung. Diese Darstel-
lungsart ist bevorzugt zu verwenden, wenn viele Bündel ermittelt wurden oder
man sich einen Überblick über die tatsächlich exportierten Daten verschaffen
möchte. Neben den dicken Linien sind zudem einige feinere zu sehen. Dies sind
Strömungslinien, die als Rauschen klassifiziert wurden. Sie werden in diesem
Beispiel unverändert dargestellt, können aber auch ausgeblendet werden.

Zylinderdarstellung: Eine andere Möglichkeit ist die Zylinderdarstellung (sie-
he Abbildung 4.2(c)). Diese entspricht einem Centroid, welcher auf einen be-
stimmten Radius ausgeweitet wurde. Dies bedeutet insbesondere, dass jedes
Element einer Strömungslinie durch einen Kreis anstelle eines Punktes definiert
wird, da dieser einem Schnitt durch den Zylinder entspricht.
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(a) Darstellung mittels Strömungslinien

(b) Bündel in der Liniendarstellung mit Rauschen

(c) Bündel in der Zylinderdarstellung mit Rauschen

(d) Bündel in der Pfeildarstellung mit Rauschen

Abbildung 4.2: Die verschiedenen Formen der Visualisierung.
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Betrachtet man einen Kreis, dessen Mittelpunkt an einem Element vi eines
Centroids v innerhalb eines Vektorfeldes ~f angelegt ist, dann liegt dieser Kreis
in einer Ebene, dessen Normalenvektor ~n definiert ist durch

~n = ~r
|~r|

mit

~r =
~f(vi)

|~f(vi)|
+

~f(vi+1)

|~f(vi+1)|
.

Zwei aufeinanderfolgende Kreise werden miteinander verbunden, sodass aus
je zwei Kreisen ein Zylinder mit nicht notwendigerweise parallelen Kappen
entsteht, da die Normalenvektoren im Allgemeinen nicht linear abhängig sind.
Da für je zwei aufeinanderfolgende Zylinder zwei dieser Kappen kongruent sind,
können alle Zylinder entlang der Strömungslinie zu einem unterbrechungsfreien
Schlauch zusammengefasst werden.

Pfeildarstellung: Eine weitere Möglichkeit ist die Pfeildarstellung (siehe Ab-
bildung 4.2(d)). Diese erweitert in gewisser Form die Zylinderdarstellung, in-
dem die einzelnen Zylinder verkürzt und mit Pfeilspitzen versehen werden,
wodurch die Strömungsrichtung unmittelbar ersichtlich wird.

Bei der Zylinder- und Pfeildarstellung stößt man auf das Problem der De-
finition des Radius solcher geometrischer Körper. Bei den aus Zylindern be-
stehenden Schläuchen kann man sich zwei Szenarien überlegen. Entweder, ein
solcher Schlauch hat einen einheitlichen Radius oder der Radius jedes Kreises
entspricht den lokalen Ausmaßen der Strömung. Die Verwendung eines nicht
konstanten Radius ist denkbar, allerdings ist dieser Ansatz anfällig gegenüber
Strömungslinien, die nicht optimal dem Verlauf der zugehörigen Strömung
folgen, was durch Rauschen im Datensatz verstärkt wird. In dieser Arbeit
wird daher ein einheitlicher Radius verwendet, da so der Verlauf der Bündel
gleichmäßig und übersichtlich visualisiert werden kann.

Zur Ermittlung des Radius wird eine grobe Approximation verwendet, was
letztlich durch den Geschwindigkeitsvorteil begründet ist. Der Radius berech-
net sich aus dem gemittelten Abstand des Centroids zu den enthaltenen Strö-
mungslinien und wird ebenfalls verwendet, um die Länge der Pfeile in der
Pfeildarstellung zu bestimmen. Dafür wird der Centroid so geresampled (siehe
Abschnitt 3.2.2), dass die neue Segmentlänge gleich dem Radius multipliziert
mit dem Faktor 4 ist. Die experimentelle Ermittlung dieses Faktors begründet
sich durch den Wahrnehmungsvorteil in Bezug auf die Strömungsrichtung, den
die Pfeildarstellung im Vergleich zur Zylinderdarstellung bieten soll. Es werden
keine zusätzlichen Informationen dargestellt.

Nach dem Erstellen der Geometrie muss diese eingefärbt werden, um den
räumlichen Verlauf wahrnehmen und eine Farbkodierung anwenden zu können.
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Die Informationen für die Farbkodierung der drei vorgestellten Möglichkeiten
zur Visualisierung der Bündel werden dabei aus deren Centroids entnom-
men. Bei der Aufsummierung der enthaltenen Strömungslinien wird für jedes
Element des Centroids die gemittelte lokale Geschwindigkeit bestimmt. Die-
se wird für das Einfärben der Bündel verwendet, analog zur Farbkodierung
der Strömungslinien selbst (siehe Abschnitt 2.4.2). Bei der richtungsbasierten
Farbkodierung wird dabei die Richtung der lokalen Strömung in einen Farb-
wert übersetzt. Der Anteil des normalisierten Richtungsvektors in x-Richtung
kann z. B. als Rotanteil interpretiert werden. Die geschwindigkeitsbasierte
Farbkodierung interpretiert dagegen die Magnitude des Richtungsvektors als
Intensitätswert. Dieser kann dann, ausgehend vom maximalen Geschwindig-
keitswert, in eine Farbe eines eindimensionalen Farbverlaufs übersetzt werden
(siehe Abbildung 2.4).

(a) Gruppieren von Strömungslinien deak-
tiviert

(b) Gruppieren von Strömungslinien akti-
viert

Abbildung 4.3: Die Gruppe von Einstellungsmöglichkeiten für die Bündelung im
StreamlineCreator -Prozessor

(a) Visualisierung von Bündeln deaktiviert (b) Visualisierung von Bündeln aktiviert

Abbildung 4.4: Die Einstellungsmöglichkeiten für die Visualisierung im Streamli-
neRenderer3D-Prozessor
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4.2 Die Benutzerschnittstelle

Die Benutzerschnittstelle ist ein wichtiger Bestandteil, vor allem aus Sicht des
Anwenders. Ziel ist es, eine möglichst intuitive Konfiguration des im vorange-
gangenen Abschnitt implementierten Algorithmus zu gewährleisten. Die Bedie-
nung soll sich dabei ebenfalls an den bereits Vorhandenen Benutzerschnittstelle
orientieren, um eine einheitliche Bedienung zu wahren.

Im Zuge der inkrementellen Implementierung ist das Gruppieren der Strö-
mungslinien zu Bündeln optional. Die Funktionalität ist standardmäßig de-
aktiviert und kann in der Benutzerschnittstelle des StreamlineCreators akti-
viert werden (siehe Abbildung 4.3(a)). Entscheidet sich der Benutzer, diese
zu aktivieren, so wird eine neue Gruppe von Einstellungen sichtbar, welche
ausschließlich für das Bündeln der Strömungslinien relevant sind (siehe Abbil-
dung 4.3(b)). Der Parameter

”
Max. Avg. Distance Threshold“ (1) spezifiziert

hierbei den Grenzwert in mm, der für die Zuordnung einer Strömungslinie zu
einem Bündel ausschlaggebend ist. Der implementierte Algorithmus betrach-
tet alle Strömungslinien und versucht jede einem Bündel zuzuordnen. Dabei
ist der durchschnittliche Abstand zwischen Bündel und Strömungslinie (siehe
Abschnitt 3.2.1) der Wert, welcher den eingestellten Wert nicht überschreiten
darf, um dem Bündel zugeordnet zu werden.

Der durchschnittliche Abstand kann die Abmessung des Datensatzes mit
Gewissheit nicht überschreiten, wodurch der Parameter durch das Intervall
[0, d] ⊂ R eingeschränkt werden kann, wobei d die Länge der Diagonalen durch
den Datensatz darstellt. Auf diese Weise wird die Anzahl der möglichen Ein-
stellung des Parameters, die zu einem unerwünschten Ergebnis führen können,
unabhängig vom Datensatz stark reduziert.

Eine ähnliche Einschränkung existiert für den
”
Minimal number of Stre-

amlines per Bundle“ Parameter (2). Dieser wird für die Entscheidung heran-
gezogen, ob ein Bündel als solches weiterverarbeitet wird oder die enthalte-
nen Strömungslinien als Rauschen interpretiert werden. Enthält das Bündel
nach dem vollständigen Durchlauf des Algorithmus mehr oder genauso viele
Strömungslinien, wie mit dem Parameter eingestellt wurden, dann wird das
Bündel als zentrale Strömung interpretiert und weiterverarbeitet. Enthält es
weniger, so werden alle enthaltenen Strömungslinien als Rauschen im Daten-
satz interpretiert und das Bündel wird verworfen. Der Wertebereich ist hierbei
eingeschränkt durch: [0, n] ⊂ R, wobei n die Anzahl an Strömungslinien re-
präsentiert.

Der Parameter
”
Streamline Resample Size“ (3) spezifiziert die Genauigkeit

der Diskretisierung der Strömungslinien. Die zuvor gefundenen Strömungslinien
werden im Normalfall durch eine unterschiedliche Anzahl von Elementen und
verschieden langen Abständen zwischen den Elementen beschrieben. Der zum
Gruppieren verwendete Algorithmus sieht dagegen für alle Strömungslinien ei-
ne identische Anzahl an Elementen jeder Strömungslinie und identisch lange
Abstände zwischen den Elementen innerhalb einer Strömungslinie vor, um zu
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funktionieren. Daher ist es notwendig, alle Strömungslinien vor der Gruppie-
rung umzurechnen, um diese Bedingungen zu erfüllen. Der Parameter gibt
dabei an, auf wie viele Elemente jede Strömungslinie umgerechnet wird. Der
Wertebereich ist hierbei eingeschränkt durch [2, 100] ⊂ N. Die untere Schranke
wurde auf den Wert zwei beschränkt, damit Strömungslinien bei der Umrech-
nung nicht degenerieren können. Die obere Schranke ist auf den Wert 100
gesetzt worden, da sich experimentell gezeigt hat, dass eine weitere Erhöhung
nicht zu einer Verbesserung des Ergebnisses führt.

Weiterhin gibt es einen Fortschrittsbalken (4), der einen Indikator für die
Berechnungsdauer des Algorithmus darstellt. Dieser kann für den Nutzer hilf-
reich sein, da die Berechnung in Abhängigkeit von der maximalen Anzahl an
Strömungslinien, den Parametern (1) und (3), sowie der Leistung des aus-
führenden Systems, einige Zeit in Anspruch nehmen kann. So kann besser ein-
geschätzt werden, ob eventuell ungünstige Konfigurationen der oben genannten
Parameter vorgenommen wurden. Parameter (1) ist dabei ausschlaggebend, da
sich bei der Einstellung 0.00, die Laufzeitkomplexität stark verschlechtert (sie-
he Abschnitt 3.2.3).

Startet man daraufhin die Berechnung der Strömungslinien mit der erstell-
ten Konfiguration, dann sind zunächst keine Bündel vorhanden, die visualisiert
werden können. Aus diesem Grund wird im StreamlineRenderer3D-Prozessor
(siehe Abbildung 4.4) die Option (5) deaktiviert. Dadurch wird implizit die
Strömungsliniendarstellung gewählt. Sollte die Berechnung allerdings abge-
schlossen und Bündel gefunden worden sein, so wird die Option aktiviert und
der Benutzer kann zwischen den, im vorangegangenen Abschnitt erklärten,
Darstellungsmöglichkeiten wählen (6).
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In dieser Arbeit wurde der QuickBundles-Algorithmus implementiert und in
das Framework Voreen integriert. Dieser kann die zuvor berechneten Ström-
ungslinien in sehr kurzer Zeit in Bündel überführen und somit Ströme sichtbar
machen, die zuvor aufgrund der großen Anzahl an ungeordneten Strömungs-
linien nicht sichtbar wären. Geht man von einem geeigneten Datensatz aus,
erzielt der Algorithmus überzeugende Ergebnisse.

Diese werden in anschaulicher Art und Weise durch verschiedene Darstel-
lungsmöglichkeiten der Centroids visualisiert. Dabei kann zur Zeit zwischen
Linien-, Zylinder- oder Pfeildarstellung gewählt werden, die jede für sich si-
tuationsabhängig einen Wahrnehmungsvorteil im Vergleich zu der puren Strö-
mungsliniendarstellung bieten kann. Die eingangs erwähnte Eignung des Da-
tensatzes ist jedoch ein limitierender Faktor für das Ergebnis des Algorithmus.
Dessen Anwendung ist nicht sinnvoll, wenn der zugrundeliegende Datensatz
aus vielen, kurzen Strömungslinien besteht. Ist deren Länge jedoch möglichst
ausgedehnt, d. h. diese durchziehen beispielsweise ein Gefäß der Länge nach,
dann ist ein zufriedenstellendes Ergebnis sehr wahrscheinlich. Hier kommt zum
Tragen, dass der Algorithmus mit sehr wenigen Parametern auskommt. Von
diesen ist im Wesentlichen nur der Schwellwert für die zugrundeliegende MDF-
Metrik für das Ergebnis von signifikanter Bedeutung. Der Anwender muss je-
doch abhängig vom Datensatz und seinen Erwartungen entscheiden, ob er einen
hohen oder einen niedrigen Schwellwert wählt. Die erste Option führt dabei zu
wenigen Bündeln aber kann zu einem größeren Fehler in der Übereinstimmung
zu tatsächlich vorhandenen Strömungen führen. Letztere reduziert dagegen
den Fehler, führt aber zu mehreren Bündeln.

An diesem Punkt lässt sich Potential für Automatisierung und Verbesse-
rung festhalten. So lassen sich sinnvolle Voreinstellungen der Parameter für
einen Datensatz bestimmen. Für die

”
Streamline Resample Size“ lässt sich

feststellen, wie gekrümmt die Strömungslinien im Datensatz sind, d. h. wie
groß der Winkel zwischen zwei Richtungsvektoren aufeinanderfolgender Ele-
mente durchschnittlich oder maximal ist. Der Schwellwert für das Kategorisie-
ren eines Bündels als Rauschen könnte durch eine statistische Auswertung aller
gefundenen Bündel ermittelt werden. Diese Automatisierungen erfolgen jedoch
auf Kosten der Laufzeit, wodurch deren Umsetzung zur Zeit nicht sinnvoll er-
scheint. Durch die technologische Entwicklung oder die Parallelisierung der
Prozesse könnte dies jedoch eine ernstzunehmende Verbesserungsmöglichkeit
darstellen.

Das automatisierte Bestimmen des bereits erwähnten Schwellwerts für die
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MDF-Metrik erfordert jedoch eine intelligente Analyse des kompletten Daten-
satzes, womit die Anwendung des QuickBundles-Algorithmus hinfällig werden
würde. Die Einstellung dieses Wertes bleibt somit dem Anwender überlassen.

Eine weitere Verbesserungsmöglichkeit findet sich in der Bestimmung des
Radius in der Zylinder- und Pfeildarstellung. Dieser wird momentan durch
eine sehr grobe Approximation ermittelt. Hier sollte von einem einheitlichen
Radius Abstand genommen und algorithmisch eine konvexe Hülle über die
Strömungslinien eines Bündels berechnet werden, sodass die räumliche Aus-
dehnung einer Strömung exakt visualisiert werden kann. Die Länge der Pfeile
sollte von der Krümmung der Strömungslinien abhängen, sodass in stark ge-
krümmten Regionen der durch das Überspringen von Elementen entstehende
Fehler geringer ausfällt. Zudem würde beispielsweise ein Phong-Shading [6] die
räumliche Wahrnehmung bei der Pfeildarstellung stark verbessern.
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den ist, dass keine anderen Quellen und Hilfsmittel als die angegebenen benutzt
worden sind und dass die Stellen der Arbeit, die anderen Werken – auch elek-
tronischen Medien – dem Wortlaut oder Sinn nach entnommen wurden, auf
jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht worden
sind.

(Datum, Unterschrift)
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